二阶动态电路分析
- 格式:ppt
- 大小:846.50 KB
- 文档页数:42
二阶非线性动态电路分析题目:二阶非线性电路如图1,R=10Ω,i=ϕ+32.0ϕ,C=0.25×210-F,C U (-0)=2V.求C U (t)(t>0),并画出t>0时ϕ-C U 的相图。
图1.二阶非线性电路理论分析:解:取ϕ与C U 为状态变量,t>0时: 32.0-ϕϕ-=-==i i dt du C C c => 380-400ϕϕ-=dtdu c 32.0ϕϕϕR R U Ri U u dt d C C L --=-== => 3210ϕϕϕ--=C U dtd Matlab 求解:此非线性动态电路难求解析解,因此利用Matlab 做数值求解,得到响应在离散时刻的近似值,再根据此离散值做出响应相关图像。
Matlab 求解的原理是利用ode45函数解微分方程组。
ode45表示采用四阶,五阶runge-kutta 单步算法。
ode45函数语法为[T,Y] = ode45(odefun, tspan,y0),这里tspan 选择0到2.5s ,初值C U =2,ϕ=0。
首先写一个函数M 文件列出待求解方程组如下:function dy=rlc(t,y)dy=zeros(2,1)dy(1)=-400*y(2)-80*y(2)^3dy(2)=y(1)-10*y(2)-2*y(2)^3end在命令行输入[t,y]=ode45(@rlc,[0 2.5],[2 0]),可求出响应C U (t )、ϕ(t )数值解。
在命令行输入:plot(t,y(:,1))grid on 数值解title('Uc-t曲线')xlabel('t')ylabel('Uc')可得到Uc(t)曲线。
可以更直观的观查Uc随时间的变化。
图2 Uc响应曲线同理可得到ϕ(t)图像如图3所示:图3 ψ-t曲线同理可得到ϕ-Uc相图如图4所示。
图4 ϕ-Uc相图结果分析:观察图形可发现,该电路处于振荡放电过程,未知量L 满足不等式R<C L2。
实验二十一 二阶动态电路设计
一、实验内容
已知RLC 串联电路, 输入为单位阶跃信号, 设计元件参数, 要求电容负载输出电压的超调量约为20%, 调节时间0.003秒。
先进行理论设计和仿真分析, 连接好电路后, 再通过示波器观察实际输入和输出曲线。
二、实验原理图和理论分析
)()()()()(22t t u t u dt t du RC dt
t u d LC S C C C ε==++ 二阶电路的阶跃响应为)sin(1)(0βωωωδ++
=-t e t u t C 超调量为21%ζζπ
σ--==e
M P 调节时间为n s t ζω3=
(5%稳态范围)
,
, C
L n ⋅=21ω L R n ⋅⋅=ωζ2 选用电容C=4.7
F, 由以上推导得L=44.2mH, R=88.4
三、实验设备
函数信号发生器
KTDG-4可调式电感箱0~100mH
可调式电阻箱0~99999.9Ω
交流电压表, 交流电流表
双踪示波器
四、仿真实验
利用EWB 软件, 仿真模型图如下
运行结果如下
电容电阻电感在实验台上连接好电
路, 测量结果如下。
电压有效值
电流有效值
利用示波器观测输入电压和输出电容上电压曲线:
六、数据处理和实验结论
略。
实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。
2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。
4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。
二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。
2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。
图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。
图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。
试分别写出系统的误差响应表达式,并估算其性能指标。
图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。
将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。
通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。
图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。
比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。
其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。