6误差理论与数据处理2
- 格式:ppt
- 大小:1.42 MB
- 文档页数:75
《误差理论与数据处理》(第六版)习题及参考答案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o击精度高? 解:射手的相对误差为:多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
第二章2-171因此无法说明测量数据中是否存在系统误差。
2通过马利科夫准则进行校核:△=0.4—(—0.4)=0.8因此,有马利科夫准则,当△显著不为零时,则有理由认为测量列存在线性系统误差。
3通过阿卑—赫梅特准则进行校核:u=0.3056因此,由u<= 0.789936可知,本次测量不一定存在周期性的系统误差。
2-19则t=1.404由ν=10+10—2=18及取α=0.05,查t分布表(书中附录表3),得tα=2.1因∣t∣=1.404< tα=2.1故无根据怀疑两组间有系统误差。
2-22解:(1) 3σ准则(莱以特准则)x̅=28.57067σ=0.2646153σ= 0.793844根据3σ准则(莱以特准则)第四测得值的残余误差∣v4∣=0.9493> 0.793844即它含有粗大误差,故将此测得值剔除。
再根据剩下的14个测得值重新计算,得x̅′=28.50286σ==0.0336113σ′= 0.100832由上表知,第十四测得值的残余误差∣v14∣=0.1029> 0.1008即它含有粗大误差,故将此测得值剔除。
再根据剩下的14个测得值重新计算,得x̅′′=28.51σ′′=0.016583σ′′=0.04975剩下的13个测得值的残余误差满足∣vi′′∣<3σ′′故可认为这些测量值不再含有粗大误差。
(2) 罗曼诺夫斯基准则首先怀疑第四测得值含有粗大误差,将其剔除。
然后根据剩下的14个测量值计算平均值和标准差,得x̅=28.50286σ=0.033611选取显著度α=0.05,已知n=15,查表得K(15,0.05)=2.24Kσ=2.240.033611=0.07528774因∣x4—x̅∣=0.90117>0.0752877故第四测量值含有粗大误差,应予剔除。
(3) 格罗布准则由3σ准则计算过程中表格知x̅=28.57067σ=0.264615按测得值的大小,顺序排列的x(1)=28.4,x(15)= 29.52进有两测得值x(1)、x(15)可怀疑,但由于x̅—x(1)=28.57067-28.4=-0.1707x̅—x(15)=28.57067-29.52=0.9493 故先怀疑x(15)是否含有粗大误差计算g(11)=x̅−x(15)σ=3.587查表得g(0)(15,0.05)=2.41则g(11)>g(0)故将第四测得值予以剔除,然后将剩下14个值再一次进行检验分析。
第1章绪论1-1 研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据。
(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济的条件下,得到理想的结果。
误差理论的主要内容:(1)讨论形成误差的原因;(2)各类误差的特征及处理方法;(3)对测量结果进行评定。
1-2 试述测量误差的定义及分类,不同种类误差的特点是什么?答1:测量误差的定义:误差=测得值-真值。
测量误差的分类:随机误差、系统误差和粗大误差。
各类误差的特点:(1)随机误差:服从统计规律,具有对称性、单峰性、有界性和抵偿性;(2)系统误差:不服从统计规律,表现为固定大小和符号,或者按一定规律变化;(3)粗大误差:误差值较大,明显地歪曲测量结果。
答2:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3 试述误差的绝对值与绝对误差有何异同,并举例说明。
答1:相同点:都是测量值与真值之差。
不同点:误差的绝对值都是正值,而绝对误差有正、有负,反映了测得值与真值的差异。
例:某长度的绝对误差为-0.05mm,而该误差的绝对值为|-0.05|mm=0.05mm。
答2:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定。