重庆市重庆一中2014届高三上学期期中考试 数学理试题 Word版含答案
- 格式:doc
- 大小:624.50 KB
- 文档页数:7
重庆一中2014届高三5月月考数学理Gothedistance12014年重庆一中高2014级高三下期第三次月考数学试题(理科)2014.5数学试题共4页,共21个小题。
满分150分。
考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.一、选择题.(共10小题,每小题5分,共50分.)1.已知集合2{1},{1}MxyxNyyx,则MN?()A.{(0,1)}B.{1}xx??C.{0}xx?D.{1}xx?2.设复数z满足()(1)1,(ziiii是虚数单位),则z?()A.1B.2C.3D.43.命题“若1,x?则22x?”的否定是()A.21,2xxB.21,2xxC.21,2xxD.21,2xx4.双曲线2213yx??上一点P到左焦点的距离为4,则点P到右准线的距离为()A.1B.2C.3D.1或35.一个圆锥被过其顶点的一个平面截去了较少的一部分几何体,余下的几何体的三视图如下图,则余下部分的几何体的体积为()A.169?B.162393??C.8393??D.16233??6.根据上面的程序框图,若输出的结果600?T,则图中横线上应填()A.48B.50C.52D.547.对于集合A,若满足:,aA?且1,1aAaA,则称a为集合A的“孤立元素”,则集合}10,,3,2,1{??M的无.“孤立元素”的含4个元素的子集个数共有()A.28B.36C.49D.1758.已知圆O的半径为1,四边形ABCD为其内接正方形,EF为圆O的一条直径,M为正方形ABCD边界上一动点,则MFME?的最小值为()(第5题图)0T?2I?whileI?TTI??2II??EndwhilePrintT(第6题图)Gothedistance2A.34?B.12?C.14?D.09.在ABC?中,角,,ABC的对边分别为,,abc,若2222014,abc??则tantantantanCCAB??()A.22013B.12013C.22014D.1201410.设,,1,abRab则2214ab的最小值为().A.22?B.22.C3D.10二.填空题.(本大题共6小题,考生作答5小题,每小题5分,共25分)11.某商场销售甲、乙、丙三种不同类型的商品,它们的数量之比分别为2:3:4,现采用分层抽样的方法抽出一个容量为n的样本,其中甲种商品有12件,则此样本容量n=;12.已知()fx是定义在R上的奇函数,对Rx??恒有)2()1()1(fxfxf,且当)2,1(?x时,2()31,fxxx则1()2f?;13.等差数列{}na的前n项和为nS,若123,2,3SSS成公比为q的等比数列,则q=;特别提醒:14~16题,考生只能从中选做两题;若三道题都做的,则只计前两题的得分.14.已知ABC?的中线,ADBE交于,K3,AB?且,,,KDCE四点共圆,则CK?;15.在直角坐标系yOx??中,极点与直角坐标系原点重合,极轴与x轴非负半轴重合建立极坐标系,若曲线2sin,(sin,xy为参数)与曲线sina有两个公共点,则实数a的取值范围是;16.若关于x的不等式232|2|4xxxax在??10,1?x内恒成立,则实数a的取值范围是.三.解答题.(共6小题,共75分,解答须写出文字说明、证明过程和演算步骤.)17.(13分)已知()2sincos(),(0,)fxxx的单増区间为5[,],()1212kkkZ.(1)求,??的值;(2)在ABC?中,若()3,fA?求角A的取值范围.Gothedistance318.(13分)如图,由M到N的电路中有4个元件,分别标为1234,,,TTTT,已知每个元件正常工作的概率均为32,且各元件相互独立.(1)求电流能在M与N之间通过的概率;(2)记随机变量?表示1234,,,TTTT这四个元件中正常工作的元件个数,求?的分布列及数学期望.19.(13分)如图,多面体ABCDS中,四边形ABCD为矩形,,,SDADSDAB??且22,,ABADMN??分别为,ABCD中点.(1)求异面直线,SMAN所成的角;(2)若二面角ASCD??大小为?60,求SD的长.20.(12分)在数列{}na中,nnSa,0?为其前n项和,向量2(,),(1,1)nnABSpaCDp,且,//CDAB其中0?p且1?p.(1)求数列{}na的通项公式;(2)若12p?,数列{}nb满足对任意nN??,都有12111...212nnnnbababan,求数列{}nb的前n项和nT.Gothedistance421.(12分)已知函数)ln1()(xxxf.(1)求()fx的单调区间和极值;(2)若121212,0,,0,1xxpppp,求证:)()()(22112211xpxpfxfpxfp.22.(12分)已知椭圆22:1xyCab??的一个焦点与抛物线24yx?的焦点重合,且椭圆C经过点M3(3,)2.(1)求椭圆C的方程;(2)求椭圆C的任意两条互相垂直的切线的交点P的轨迹方程;(3)设(2)中的两切点分别为BA,,求点P到直线AB的距离的最大值和最小值.Gothedistance 5MNCDASBE数学试题参考答案(理科)2014.5 一、选择题:CBCDBBABAD 二.填空题:11.5412.5413.32或32214.115.(0,1]16.(,4]??三.解答题.17.(1)()2sin(coscossinsin)sin2cos(1cos2)sinfxxxxxx=sin(2)sinx,由已知可得,,1.T即()sin(2)sin.fxx又当512xk时,()fx取最大值,即52()2,(,)122kmkmZ解得2,()3nnZ,由于,.3故1,.3(2)3()sin(2).32fxx由()3,fA?得3sin(2),32A而52,333A由正弦函数图象得,252(,)(,),(0,)(,).3333332AA18.(1)记事件iA为“元件iT正常工作”,4,3,2,1?i,事件B表示“电流能在M与N之间通过”,则32)(?iAP,由于4321,,,AAAA相互独立,所以32142144AAAAAAAAB,法一:)()()()()(3214214432142144AAAAPAAAPAPAAAAAAAAPBP??81703232313132323132;法二:从反面考虑:))(1()(1)(1)(2134AAPAPAPBP817081111))31(1(3213112;(2)由题?~)32,4(B,4,0,)31()32()(44kCkPkkk?,易得?的分布列如右,期望38)(??E.19.法一(几何法):(1),,.SDADSDABSDABCD面连MN,则由已知,AMND为正方形,连,DM则,DMAN?又DM是SM在面01234P811818812481328116Gothedistance6MNCDABSzxyABCD上的射影,由三垂线定理得,SMAN?.所以直线SM与AN所成的角为090.(2),,ADCDADSDAD面SCD,过D作DESC?于E,连AE,则AED?为所求二面角ASCD??的平面角060.则在ADERt?中易得3,3DE?设SDa?,在SDCRt?中,223211,.3114aDESDaa法二:(向量法)(1)以D为原点,分别以,,DSDADC为,,xyz轴建系,则(0,1,0),(0,0,1),(0,1,1),(0,0,2)ANMC,设)0,(aS,则(0,1,1),(,1,1),ANSMa0??SMAN,故SM与AN成?90角;(2)设平面ASC的一个法向量为1(,,),(,1,0),(0,1,2)nxyzASaAC,由),2,2(111aanACnASn??,又显然平面SDC的一个法向量为2(0,1,0)n?,由题有:012222211cos60cos,.1144annSDaaa20.(12分)解:(1)2//(1).nnABCDpSpa由21111,(1),npapaap又由2211(1)(1)nnpSpapSpa??,两式相减得:1111(1),.nnnnnpaaaaap所以数列{}na是以首项为p,公比为1p的等比数列,21(),().nnanNp(2)法一:当21?p时,2,2Nnann,在12111...212nnnnbababan中,令1,n?则111111121,,1.222baab因为1211211...212nnnnnbabababan,()a所以11122221111...2,(2)22nnnnnbabababann,将上式两边同乘公比12p?得,12112...21,(2)nnnnbababann,()b()a减去()b得,1,.(2)2nnnbabnn,又11,b?所以)(,Nnnbn?? 所以{}nb的前n项和2)1(??nnTn。
秘密★启用前2014年重庆一中高2015级高二上期期末考试数 学 试 题 卷(理科) 2014.1数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
第Ⅰ卷(选择题,共50分)一、选择题:(本大题 10个小题,每小题5分,共50分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须填涂在答题卡上相应位置。
1.直线10ax y +-=与直线2320x y +-=垂直,则实数a 的值为( ) A .23 B .1- C .2-D .32- 2.抛掷一枚均匀的骰子(骰子的六个面上分别标有1、2、3、4、5、6个点)一次,观察掷出向上的点数,设事件A 为掷出向上为偶数点,事件B 为掷出向上为3点,则()P A B =( )A.13 B.23 C.12 D.563.已知圆的半径为2,圆心在x 轴的正半轴上,且与y 轴相切,则圆的方程是( )A .2240x y x +-= B .2240x y x ++= C .22230x y x +--= D .22230x y x ++-= 4.棱长为2的正方体1111ABCD A BC D -的内切球...的表面积为( ) A.43πB .16πC .4πD .323π5.已知函数()f x 的导函数为()f x ',且满足关系式()()2=32xf x x xf e '++,则()2f '的值等于( )A.2-B.222e -C.22e -D.222e --6.已知α、β是不重合的平面,a 、b 、c 是不重合的直线,给出下列命题:①a a ααββ⊥⎫⇒⊥⎬⊂⎭;②//ab ac c b ⊥⎫⇒⎬⊥⎭;③//a b b a αα⎫⇒⊥⎬⊥⎭。
俯视图侧视图正视图重庆一中2014-2015学年高二上学期期中考试数学理试题2014.11.数学试题共4页。
满分150 分。
考试时间120 分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线0122:=+-yxl的倾斜角为( )A.30°B.45°C.60°D.90°2.下列四条直线中, 哪一条是双曲线1422=-yx的渐近线?( )A.xy21-= B.xy41-=C.xy2= D.xy4=3.如图1,一个几何体的三视图是由两个矩形和一个圆所组成,则该几何体的表面积是( )A.π7B.π8C.π10 D.12+π(图1)4.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③x、y是平面,z是直线;④x、y、z均为平面。
其中能使“yxzyzx//⇒⊥⊥且”为真命题的是( )A.③④B.①③C.②③D.①②5.直线l不经过坐标原点O, 且与椭圆1222=+yx交于A、B两点,M是线段AB的中点.那么,直线AB与直线OM的斜率之积为( )A.1-B.1C.21- D.26.已知命题:p直线2+=xy与双曲线122=-yx有且仅有一个交点;命题:q若直线l垂直于直线m,且,//α平面m则α⊥l. 下列命题中为真命题的是( )A.()()p q⌝∨⌝ B.()p q⌝∨ C.()()p q⌝∧⌝D.p q∧7.下列有关命题的说法错误..的是( )侧视图B CA.对于命题p :x R ∃∈,使得210x x ++<. 则⌝p :x R ∀∈, 均有210x x ++≥.B.“1=x ”是“0232=+-x x ”的充分不必要条件.C.命题“若12=x , 则1=x ”的否命题为:“若12≠x ,则1≠x ”.D.命题“若5≠+y x ,则32≠≠y x 或”是假命题.8.(原创)如下图2, 在平行四边形ABCD 中, AD=2AB=2, ∠BAC=90°. 将△ACD沿AC 折起, 使得BD=5. 在三棱锥D-ABC 的四个面中,下列关于垂直关系的叙述错误..的是( ) A.面ABD ⊥面BCD B.面ABD ⊥面ACD C.面ABC ⊥面ACD D.面ABC ⊥面BCD (图2)(图3)9.(原创)如上图3, 四棱锥P-ABCD 的底面ABCD 是边长为1的正方形, 面PA B ⊥面ABCD. 在面PAB 内的有一个动点M, 记M 到面PAD 的距离为d . 若1||22=-d MC , 则动点M 在面PAB 内的轨迹是( ) A.圆的一部分 B.椭圆的一部分 C.双曲线的一部分D.抛物线的一部分10.设椭圆22221(0)x y a b a b +=>>的离心率为12e =,右焦点为F (c, 0),方程20ax bx c +-=的两个实根分别为x 1和x 2,则点P (x 1, x 2)的位置( )A.必在圆222x y +=内B.必在圆222x y +=上C.必在圆222x y +=外D.以上三种情形都有可能二、填空题:本大题共5小题,每小题5分,共25分,把答案写在答题卡相应位置上.11.过点P(3,1)向圆012222=+--+y x y x 作一条切线, 切点为A, 则切线段PA 的长为 .12.椭圆1002x +362y =1上一点P 到它的右准线的距离是10,那么P 点到左焦点的距离是 .13.一个几何体的三视图如图4, 则这个几何体的体积为 .A1B 1C 1E FGA B14.半径为5的球内包含有一个圆台, 圆台的上、下两个底面都是 球的截面圆, 半径分别为3和4. 则该圆台体积的最大值为 .15.(原创)设A 为椭圆12222=+by a x (0>>b a )上一点, 点A 关于原点的对称点为B, F 为椭圆的右焦点, 且AF ⊥BF. 若∠ABF ∈[12π,4π], (图4)则该椭圆离心率的取值范围为 .三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤16.(本小题13分)已知双曲线2222:1(0,0)x y C a b a b-=>>实轴长为2。
2014年重庆一中高2014级高三下期第一次月考数学试题卷(理科)2014.3特别提醒:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分。
一.选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知复数21izi=-(i是虚数单位),则复数z的虚部为()(A)i(B)1 (C)i-(D)1-(2)已知条件p:α是两条直线的夹角,条件q:α是第一象限的角。
则“条件p”是“条件q”的()(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(3)(原创)以下茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分)。
已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则x、y的值分别为()(A)4、5 (B)5、4(C)4、4 (D)5、5(4)(原创)已知实数,x y满足41x y+=,则xy的值域为()(A)1 0, 16⎛⎤⎥⎝⎦(B)11,1616⎡⎤-⎢⎥⎣⎦(C)1,16⎛⎤-∞⎥⎝⎦(D)1,8⎛⎤-∞⎥⎝⎦(5)某几何体的三视图如右图所示,则它的表面积为()(A)45π(B)54π(C)63π(D)69π(6,其余棱长均为2,则这个四面体的体积为()(A )1 (B )43 (C) (D )3(7)已知函数()33f x x x c=-+的图像与x 轴恰好有三个不同的公共点,则实数c 的取值范围是( ) (A )()1,1- (B )[]1,1- (C )()2,2- (D )[]2,2-(8)执行如右图所示的程序框图,则输出的s 的值等于( ) (A )13 (B )15 (C )36 (D )49(9)()0203sin 70tan 804cos102cos 10--⋅=-( )(A(B )2 (C) (D )4(10)(原创)已知,,D E F 分别是ABC ∆的三边,,BC CA AB 上的点,且满足23AF AB =,34AE AC =,()||cos ||cos AB ACAD R AB B AC C λλ⎛⎫=+∈ ⎪⎝⎭,DE DA DE DC⋅=⋅,()sin cos ||||BD B AD B DF R BD AD μμ⎛⎫=+∈ ⎪⎝⎭。
重庆市重庆一中2014届高三上学期期中考试理科数学试卷(解析版)一、选择题1)【答案】C【解析】选C.考点:向量的坐标运算及垂直关系.2.已知全集U=R)AC【答案】D【解析】考点:集合的基本运算及解不等式.3)A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【解析】00一定成立.故不是充分条件..选B.考点:1、等比数列;2、充分条件与必要条件.4()A.2 B.3 C.4 D.6【答案】A 【解析】试题分析: 考点:1、函数的导数;2、二次方程根与系数的关系.的三条边及相对三个角,则ABC ∆的形状是(A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形【答案】B【解析】试题分析:在三角形中,o s均不为0,故由题意可得:由正弦定理得:,即考点:1、共线向量;2、正弦定理.7)A.10 B.11 C.12 D.13【答案】B【解析】若,则61(a a+11.考点:12、等差数列的性质的应用.8tan-)【答案】C 【解析】 3cos 3==.考点:三角恒等变换.9.前n 项的积前n 项的和那么不确定 【答案】A 【解析】3121n x x x x x =⋅⋅⋅=. (x -1故选A.A..二、填空题10【答案】32 【解析】考点:等比数列.112,a b =37b =,则的夹角为 .【解析】 试题分析:由37b =得:考点:向量的模、夹角及数量积.12的解集为 .【解析】由题意得:所4不等考点:1、一元二次不等式、指数不等式及对数不等式的解法;2、韦达定理.13.若直线与函数的图象相切于点,则切点的坐标为 .【解析】试题分析:对函数求导得:.设切点,则点考点:导数的应用.14的最大值为 .【答案】16【解析】.取得最大值.所以考点:1、等差数列;2、最值问题.三、解答题15(1(2)上的对称中心.【答案】(1(2【解析】试题分析:(1)将降次化一,可化为.(2)在(1当时,可以得到.又,所以.这样试题解析:(1(2考点:不等式.16(1(220【答案】(1(2【解析】试题分析:(1)在本题中由由此便可得一个方程组,解这个方程组即可.(2)由(1试题解析:(1)(2)考点:1、等差数列与等比数列;2.17的图象.ABC 的三c o s C 的值【答案】(1(2【解析】试题分析:(1..(2)由(1①注意s 1,s i n co sC =,所以可令①②两式平方相加即可. 试题解析:(1)12ϕ+=πϕ=,f-∈(26………………………………①考点:1、三角函数的图象及其变换;2、正弦定理及三角恒等变换.18(1(2.【答案】【解析】试题分析:(1(2)联系(1试题解析:(1(2)由(1考点:1、利用导数求函数的最值;2、方程的解.19.已知数合(11的项,请写出所有这样数列的前三项;(2(3【答案】(1)9,3,1或2,3,1;(2)详见解析;(3)详见解析. 【解析】试题分析:(1.(2. (32、3时,可求出前三项,前三项就是1、2、3三个数,结论成立.时,数列中的项最终必将小于或等于 3.现在的问题是如何证明这一点.注意(2)小题的结,这样依次递减下去,数列中的项最终必将小于或等于3.一旦小于等于3,则必有1、2、3,从而问题得证.试题解析:(10.所以前三项分别为9,3,1或2,3,1..综上得,前三项分别为9,3,1或2,3,1.(2)①当被3除余1时,由已知可得3除余23的倍数,3的倍数,3除余033333(3.由(2.大于3由前面的计算知,只要数列中存在小于等于3的项,则必有1、2、3三个数,考点:1、递推数列;2、不等式的证明.20(1(2问:求出该切线方程;若不能,请说明理由.【答案】(1(2【解析】试题分析:(10.求导得:..(2)本题属探索性问题.对探索性问题,常用的方法是假设成立,然后利用题设试着去求相关的量.若能求出,则成立;若无解,则不成立.的极值点,故有.又函数存在两个零点4个方程(4个未知数).方程).试题解析:(1(2……………………………………⑤.考点:1、函数的单调性;2、函数的零点;3、函数的导数及其应用.。
目录分类解析汇编 A 单元 集合与常用 分类解析汇编 C 单元 三角函数 分类解析汇编 E 单元 不等式 分类解析汇编 F 单元 平面向量 分类解析汇编 I 单元 统计 分类解析汇编 J 单元 计数原理 分类解析汇编 K 单元 概率分类解析汇编 L 单元 算法初步与复数 分类解析汇编 M 单元 推理与证明 分类解析汇编 N 单元 选修4系列A 单元 集合与常用A1 集合及其运算【数学理卷·2015届重庆市重庆一中高三上学期期中考试(201411)word 版】1.已知集合{}{}22,01242>=<-+=x x B x x x A ,则=B A ( )A .{}6<x x B .{}12x x << C .{}26<<-x x D .{}2<x x【知识点】不等式解法;集合运算. A1 D1【答案】【解析】B 解析:A={x|-6<x<2}, B={x|x>1},则=B A {}12x x <<,故选B.【思路点拨】化简集合A 、B ,再用交集定义求解. 【数学理卷·2015届湖北省武汉华中师范大学第一附属中学高三上学期期中考试(201411)】2.已知集合{}2|ln(9)A Z B x y x ===-,,则A B 为()A .{}210--,, B. {}21012--,,,, C. {}012,, D. {}1012-,,,【知识点】集合的运算A1【答案】【解析】B 解析:因为{}{}22|ln(9)|90B x y x x x ==-=->,所以{}|33B x x =-<<,又A Z =,所以{}21012A B =--,,,,,故选B.【思路点拨】先解出集合{}|33B x x =-<<,再求交集即可.【数学理卷·2015届浙江省嘉兴一中等五校2015届高三上学期第一次联考(201412)】1.已知全集为R ,集合{}{}221,680x A x B x x x =≥=-+≤,则R AC B =()(A ){}0x x ≤(B ){}24x x ≤≤(C ){}024x x x ≤<>或(D ){}024x x x ≤<≥或【知识点】集合的运算A1 【答案】【解析】C 解析:因为{}{}{}{}2210,68024x A x x x B x x x x x =≥=≥=-+≤=≤≤,所以{}{}24,024R R C B x x x A C B x x x =<>=≤<>或或,则选C.【思路点拨】遇到不等式解集之间的关系时,可先对不等式求解,再对集合进行运算. 【数学理卷·2015届河北省唐山一中高三上学期期中考试(201411)】1.已知集合A={x|y=x -2}, B={y|y=x -2},则A ∩B= ( ) A .B .RC .(-∞,2]D .[0,2]【知识点】集合的运算A1 【答案】【解析】D 解析:集合{}{}2B=0A x x y y =≤≥,,所以{}B=02A x x ⋂≤≤,故选择D.【思路点拨】先求得集合A 与B ,在根据集合的交集运算求得集合A B ⋂的值.【数学理卷·2015届云南省部分名校高三12月统一考试(201412)】1.已知集合2{|230}A x x x =--≥,{|22}B x x =-≤<,则A B ⋂=()A .[1,2)B .[1,1]-C .[1,2)-D .[2,1]-- 【知识点】集合及其运算A1 【答案】D 【解析】解得A={x3x 1x ≥≤-或}则A B ⋂=[2,1]--【思路点拨】先化简集合A ,再求交集。
2014年重庆一中高2014级高三下期第三次月考 数 学 试 题(理科)2014.5【试卷综析】本卷为高三月考试卷,本次高三数学模拟试题从整体看,既注重了对基础知识的重点考查,也注重了对能力的考查。
从考生的反映看,试题难度适中,最后两道大题考查深入,有较好的梯度和区分度;坚持重点内容重点考,考潜能,考数学应用,在“知识的交汇处命题”有新的突破,反映了新课程的理念,试卷注重对常规数学思想方法以及通性、通法的考查,注重认识能力的考查,注重创新意识,稳中求新,新中求活,活中凸显能力。
注重综合性、应用性、探索性、开放性等能力型题目的考查,充分体现了能力立意,在考查学生数学基础知识、数学思想和方法的基础上,以逻辑思维能力为核心,同时考查了学生的学习能力、运算能力、空间想像能力、应用能力、探究能力、分析和解决问题的能力和创新能力,同时加强对思维品质的考查。
试卷在考查基础知识的同时,注重对数学思想和方法的考查,注重对数学能力的考查。
数学试题共4页,共21个小题。
满分150分。
考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.一、选择题.(共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{1},{M x y x N y y ==+==,则M N =( )A. {(0,1)}B.{1}x x ≥- C.{0}x x ≥ D.{1}x x ≥【知识点】集合的概念与运算.【答案解析】C 解析:解:M R,=N ={0}x x ≥∴ MN ={0}x x ≥【思路点拨】M 是函数21y x =+的定义域,N 是函数y =. 2.设复数z 满足()(1)1,(z i i i i ++=-是虚数单位),则z =( )A. 1B.2C.3D. 4 【知识点】复数的运算;复数的模的计算. 【答案解析】B解析:解:设z a bi=+则()()()()21111a bi i i a b a i b i i +++=+++++=-∴()()111a b b a i i--+++=-可知11,11a b a b --=++=-0,2a b ∴==-2,2z i z ∴=-=正确选项为B.【思路点拨】可用待定系数法设出复数Z ,然后求出a 与b 的值,最后求出复数的模长. 3.命题“若1,x >则22x >”的否定是( )A.21,2x x ∀>≤B.21,2x x ∃>>C.21,2x x ∃>≤D.21,2x x ∃≤> 【知识点】命题的否定命题.【答案解析】C 解析:解:命题的否定指对命题结论的否定,故1x >时,22x >不一定成立即:212x x ∃>≤,,所以选C 【思路点拨】命题的否定命题只将原命题的结论否定,而否命题是将原命题的题设和结论都否定,此题求的是命题的否定命题.4.双曲线2213y x -=上一点P 到左焦点的距离为4,则点P 到右准线的距离为( )A. 1B.2C.3D. 1或3【知识点】双曲线的定义;双曲线的第二定义;双曲线的离心率;双曲线的性质.【答案解析】D 解析:解:设P 到右准线的距离为d,根据题意可知长轴a=1,c=2, 2e ∴=双曲线的性质可知双曲线上的点到两焦点的距离差的绝对值为2a,所以设左焦点为1F ,右焦点为2F ,则122PF PF -= 2226PF PF ==或 ,再根据第二定义2PF ed = 1d ∴=或d=3 .【思路点拨】设P 到右准线的距离为d,根据题意可知长轴a=1,c=2, 2e ∴=双曲线的性质可知双曲线上的点到两焦点的距离差的绝对值为2a,所以设左焦点为1F ,右焦点为2F ,则122PF PF -= 2226PF PF ==或 所以d 有两个值.5.一个圆锥被过其顶点的一个平面截去了较少的一部分几何体,余下的几何体的三视图如下图,则余下部分的几何体的体积为( )A. 169πB. 16239π+ C. 839π+ D. 16233π+【知识点】三视图;勾股定理;锥体的体积公式.【答案解析】B 解析:解:根据题意可求圆锥的高为2,底面圆的半径为2,截面弦所对的圆心角为120o ,所以剩余几何的体积为23倍圆锥的体积1V +三棱锥的体积2V ,211833V r h ππ==,三棱锥的体积为211233233V sh ==⋅=∴余下几何体的体积为1223V V +=16239π+. 【思路点拨】依据三视图,对各线段的长度正确求值,注意三视图中数据与原图的对应关系,代入体积公式可求.(第5题图)0T = 2I =while I <T T I =+ 2I I =+EndwhilePr int T(第6题图)6.根据上面的程序框图,若输出的结果600=T ,则图中横线上应填( ) A. 48 B.50 C. 52 D.54 【知识点】程序框图;等差数列求和.【答案解析】B 解析:解:根据程序框图可知T 为首项为2公差为2的等差数列的前n 项和,依据数值能计算出数列的最后一项为48,再根据题意可知应填50.【思路点拨】依据程序框图可知此程序为等差数列的求和数列,所以根据等差数列的求和公式可求出数值.7.对于集合A ,若满足:,a A ∈且1,1a A a A -∉+∉,则称a 为集合A 的“孤立元素”,则集合}10,,3,2,1{ =M 的无“孤立元素”的含4个元素的子集个数共有( ) A. 28 B.36 C.49 D. 175 【知识点】元素与集合关系的判断【答案解析】A 解析:解:我们用列举法列出满足条件的所有集合,即可得到答案,符合条件的集合有{}{}{}{}{}{}{}1,2,3,41,2,4,5,1,2,5,61,2,6,71,2,7,81,2,8,91,2,9,107个{}{}{}{}{}{}2,3,4,52,3,5,62,3,672,3,7,82,3,8,92,3,9,106个{}{}3,4,5,63,4,6,75个{}7,8,9,101个,所以7+6+5+4+3+2+1=28【思路点拨】本题在新定义的基础上考查了集合的成立的条件,利用列举法可得到所有子集个数.8.已知圆O 的半径为1,四边形ABCD 为其内接正方形,EF 为圆O 的一条直径,M 为正方形ABCD 边界上一动点,则⋅的最小值为( )A.34-B.12-C.14-D.0【知识点】【答案解析】B 解析:解:由已知可画出图形,如下图所示:设M(x,y),E(-1,0),F(1,0),所以MF ME ⋅=(-1-x,-y )(1-x,-y)= 221x y +-,即当22x y +最小时,也就是正方形边界上的点到原点的距离的最小值的算术平方根;2212x y +≥,即⋅=221x y +-12≥-,故选B.【思路点拨】向量的数量积公式;函数的最小值.9.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若2222014,a b c +=则tan tan tan tan C CA B +=( ) A.22013 B. 12013 C.22014 D.12014【知识点】三角形的正、余弦定理;内角和为π定理;;两角和的正弦定理;切弦互化. 【答案解析】A 解析:解:将已知2222014a b c +=变形为22222013a b c c +-=,由余弦定理又可变形为22cos 2013ab c c =,由正弦定理得22sin 2013sinAsinBcosC C=,等式右边2sin sin tan sinAsinBcosC sinAsinB C CC=,又()C A B π=-+,所以sin()sinA cos cos sinBtan tan sinAsinB sinAsinBA B B A CC++==11tan ()tan tan C A B+tan tan ()tan tan C C A B =+, ∴tan tan 2()tan tan 2013C C A B +=,故选A.【思路点拨】利用所学过的定理实现边向角的转化.10.设,,1,a b R a b +∈+= ).A. 2B. .C 3 D. 【知识点】数形结合思想;对称问题;几何法求最值. 【答案解析】D 解析:解: 可将1b a=-代入=可转化为数轴上的点A (a,0)到B(0,1)与C(1,2)的距离之和和最小的问题,由下图所示:最小值为(0,-1)到(1,2)【思路点拨】与求最值有关的问题一般转化成几何问题或三角问题,利用几何性质可顺利求解,也有利用三角的有界性求解,不同问题不同的应用是关键.二.填空题.(本大题共6小题,考生作答5小题,每小题5分,共25分)11.某商场销售甲、乙、丙三种不同类型的商品,它们的数量之比分别为2:3:4,现采用分层抽样的方法抽出一个容量为n 的样本,其中甲种商品有12件,则此样本容量n = ; 【知识点】分层抽样的概念【答案解析】54解析:解:由分层抽样的概念可知所抽样本中甲、乙、丙三种商品的数量之比也为2:3:4,故可设乙、丙两商品分别有3k 、4k 件,由题意得12:3k :4k=2:3:4,所以k=6,故乙、丙两商品分别有18、24件,故n=12+18+24=54【思路点拨】分层抽样中样本中不同类别个体数量之比与总体中它们的比例相同.12.已知()f x 是定义在R 上的奇函数,对R x ∈∀恒有)2()1()1(f x f x f --=+,且当)2,1(∈x 时,2()31,f x x x =-+则1()2f =;【知识点】奇函数的定义;函数的周期性;求函数的解析式.【答案解析】54解析:解:因为()f x 是奇函数,所以()00f =,令x=1有()()()()()111122200f f f f f +=--⇒==()20f ∴=()()11f x f x ∴+=-令12x =,3122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭=54-又11152224f f f ⎛⎫⎛⎫⎛⎫-=-⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【思路点拨】本题先根据特殊值求出()20f=,然后再利用奇函数的性质求出12f⎛⎫⎪⎝⎭的值.13.等差数列{}n a的前n项和为n S,若123,3S S成公比为q的等比数列,则q= ;【知识点】等差数列前n和的概念,等比中项公式.【答案解析】2123,3S S成公比为q的等比数列即112123)a)a+a+a、3(a+a成公比为q的等比数列,又1322+=a a a即1122)a a+a、9a成公比为q的等比数列,所以12a≠a,2121229a=(a+a)a,且12211)q)a==+a+a aa,整理2121229a=(a+a)a得:221212225a a a+=a即1221225+=a aa a,设21aa=x,则22x520x-+=,解得122x=或所以q2=【思路点拨】先利用等比中项公式得到2121229a=(a+a)a,再利用1322+=a a a;两式联立解出21aa,最后得到q2=特别提醒:14~16题,考生只能从中选做两题;若三道题都做的,则只计前两题的得分.14.已知ABC∆的中线,AD BE交于,K AB=且,,,K D C E四点共圆,则CK=;【知识点】三角形的中位线;勾股定理;射影定理;特殊值法;弦长公式.【答案解析】1解析:解:可用特殊值法设BCACDF∴=,EC=,DC=,设KC与DE交于M点,由弦心距可求CM=34,MK=14,1CK∴=.【思路点拨】适合用特殊值的问题,在选择、填空题中要用特殊值法,是一种省时省力的数学方法.15.在直角坐标系y O x --中,极点与直角坐标系原点重合,极轴与x 轴非负半轴重合建立极坐标系,若曲线2sin ,(sin ,x y θθθ=⎧⎨=⎩为参数)与曲线sin a ρθ=有两个公共点,则实数a 的取值范围是 ; 【知识点】【答案解析】(0,1]解析:解:曲线2sin ,(sin ,x y θθθ=⎧⎨=⎩为参数)转化为普通方程为:2(11)y x x =-≤≤;曲线sin a ρθ=转化为普通方程为:y a =,有两个公共点,画图形如上图可得:a ∈(0,1]. 【思路点拨】数形结合的思想方法;16.若关于x 的不等式232|2|4x x x ax +-≥-在[]10,1∈x 内恒成立,则实数a 的取值范围是 .【知识点】不等式;函数的图像;组合函数的性质. 【答案解析】(],4-∞解析:解:2124,2y x y x x x =+=-⇒23224x x x ax +-+≥[]1,10x ∈为正数,所以不等式转化为242x x x x ++-,设2124,2y x y x xx =+=-,两个函数在[]1,2上都为减函数,在[]2,10上都为增函数,依据组合函数的性质可得24242905x x x x ≤++-≤+242x x x x ∴++-的最小值为4,224x x x ax ∴+-≥-在[]1,10x ∈上恒成立,a 应该小于等于最小值4.【思路点拨】本题首先根据取值范围分离出常数a,然后依据组合函数的性质求出242x x x x ++-的取值范围,最后依据恒成立问题最到a 的范围.三.解答题.(共6小题,共75分,解答须写出文字说明、证明过程和演算步骤.) 17.(13分) 已知()2sin cos(),(0,)f x x x ωωϕωπϕπ=+>-<<的单増区间为5[,],()1212k k k Z ππππ-+∈.(1)求,ωϕ的值;(2)在ABC ∆中,若()f A <求角A 的取值范围.【知识点】两角和的余弦公式;降次公式;三角函数的最值、周期;三角不等式.【答案解析】(1)1,.3πωϕ==-(2)0,,32A πππ⎛⎫⎛⎫∈⋃ ⎪ ⎪⎝⎭⎝⎭ 解析:解:(1)()2sin (cos cos sin sin )sin 2cos (1cos 2)sin f x x x x x x ωωϕωϕωϕωϕ=-=-- =sin(2)sin x ωϕϕ+-,由已知可得,, 1.T πω=∴=即()sin(2)sin .f x x ϕϕ=+-又当512x k ππ=+时,()f x 取最大值,即52()2,(,)122k m k m Z πππϕπ++=+∈解得2,()3n n Z πϕπ=-+∈,由于,.3ππϕπϕ-<<∴=-故1,.3πωϕ==-(2)3()sin(2)3f x x π=-+由()3,f A <得3sin(2)3A π-< 而52,333A πππ-<-<由正弦函数图象得,252(,)(,),(0,)(,).3333332A A ππππππππ-∈-∴∈【思路点拨】(1)先利用两角和的余弦公式、降次公式把函数化简,然后求出T 、ω的值,再利用最值的情况解得φ;(2)由()3,f A <得3sin(2),32A π-<得到52,333A πππ-<-<再解出A 即可.18.(13分)如图,由M 到N 的电路中有4个元件,分别标为1234,,,T T T T ,已知每个元件正常工作的概率均为32,且各元件相互独立.(1)求电流能在M 与N 之间通过的概率; (2)记随机变量ξ表示1234,,,T T T T 这四个元件中正常工作的元件个数,求ξ的分布列及数学期望.【知识点】互斥事件、对立事件、相互独立事件的概率;分布列;数学期望.【答案解析】(1) 7081(2)38)(=ξE .ξ0 1 2 3 4P811 818 8124 8132 8116MABS解析:解:(1) 记事件i A 为“元件i T 正常工作”,4,3,2,1=i ,事件B 表示“电流能在M 与N 之间通过”,则32)(=i A P , 由于4321,,,A A A A 相互独立,所以32142144A A A A A A A A B ++=,法一:)()()()()(3214214432142144A A A A P A A A P A P A A A A A A A A P B P ++=++=81703232313132323132=⋅⋅⋅+⋅⋅+=;法二:从反面考虑:[]))(1()(1)(1)(2134A A P A P A P B P -⋅-⋅-=817081111))31(1(3213112=-=⎥⎦⎤⎢⎣⎡-⋅-⋅-=;(2)由题ξ~)32,4(B ,4,0,)31()32()(44===-k C k P kk k ξ,易得ξ的分布列如右,期望38)(=ξE .【思路点拨】记事件i A 为“元件i T 正常工作,相互独立每一个事件的概率等于它所有基本事件概率的和,根据二项分布先求随机变量相应结果的概率,再利用数学期望公式求期望.19.(13分)如图,多面体ABCDS 中,四边形ABCD 为矩形,,SD AD ⊥22,,AB AD M N ==分别为,AB CD 中点.(1)求异面直线,SM AN 所成的角;(2)若二面角A SC D --大小为60,求SD 的长.【知识点】法一(几何法):线面垂直的性质定理;三垂线定理;二面角的平面角的作法.法二: (向量法): 向量语言表述线线的垂直、平行关系;用空间向量求平面间的夹角.【答案解析】(1)090.(2) SD =11解析:解:法一(几何法):(1),,.SD AD SD AB SD ABCD ⊥⊥∴⊥面连MN ,则由已知,AMND 为正方形,连,DM 则,DM AN ⊥又DM 是SM 在面ABCD 上的射影,由三垂线定理得,SM AN ⊥.所以直线SM 与AN 所成的角为090.(2),,AD CD AD SD AD ⊥⊥∴⊥面SCD ,过D 作DE SC ⊥于E ,连AE,则AED ∠为所求二面角A SC D --的平面角060.则在ADE Rt ∆中易得DE =设SD a =,在SDC Rt ∆中,311DE SD a ==∴==法二: (向量法)(1) 以D 为原点,分别以,,DS DA DC 为,,x y z 轴建系,则(0,1,0),(0,0,1),(0,1,1),(0,0,2)A N M C ,设)0,0,(a S ,则(0,1,1),(,1,1),AN SM a =-=-0=⋅,故SM 与AN 成90角;(2) 设平面ASC 的一个法向量为1(,,),(,1,0),(0,1,2)n x y z AS a AC ==-=-,由),2,2(00111a a n AC n n =⇒⎪⎩⎪⎨⎧=⋅=⋅,又显然平面SDC 的一个法向量为2(0,1,0)n =, 由题有:012cos60cos ,11n n SD a ====【思路点拨】法一(几何法): (1)先利用线面垂直的性质定理得到,DM AN ⊥;再利用三垂线定理得SM AN ⊥;然后得出结论. (2)作出二面角,然后在SDC Rt ∆中得出结论. 法二: (向量法)(1)建立空间直角坐标系,分别求出SM ,AN 的方向向量,进而根据向量垂直的充要条件,得到结论;(2)分别求出平面ASC 的法向量和平面SDC 的一个法向量,代入向量夹角公式可和答案. 20.(12分)在数列{}n a 中,n nS a ,0>为其前n 项和,向量2(,),(1,1)n n AB S p a CD p =-=-,且,//其中0>p 且1≠p .(1)求数列{}n a 的通项公式;(2)若12p =,数列{}n b 满足对任意n N *∈,都有12111...212nn n n b a b a b a n -+++=--,求数列{}n b 的前n 项和n T .【知识点】共线向量;前n 项和与通项公式的关系;特殊数列的求和方法.【答案解析】(1)21(),().n n a n N p -*=∈(2)2)1(+=n n T n 解析:解:(1)2//(1).n n AB CD p S p a ⇒-=-由21111,(1),n p a p a a p =-=-∴=又由2211(1)(1)n n n n p S p a p S p a ++⎧-=-⎪⎨-=-⎪⎩,两式相减得:1111(1),.n n n n n p a a a a a p +++-=-∴= 所以数列{}n a 是以首项为p ,公比为1p 的等比数列,21(),().n n a n N p -*=∈(2)法一:当21=p 时,*2,2N n a n n ∈=-,在12111 (21)2n n n n b a b a b a n -+++=--中,令1,n =则111111121,, 1.222b a a b =--==∴=因为1211211 (21)2n n n n n b a b a b a b a n --++++=--, ()a 所以11122221111...2,(2)22n n n n n b a b a b a b a n n -----++++=--≥,将上式两边同乘公比12p =得,12112...21,(2)nn n n b a b a b a n n --+++=--≥, ()b ()a 减去()b 得,1,.(2)2n n nb a b n n =∴=≥,又11,b =所以)(,*N n n b n ∈= 所以{}n b 的前n 项和2)1(+=n n T n 。
2014年普通高等学校招生全国统一考试(重庆卷)数 学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限 (2) 对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列(3) 已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ) A. 3.24.0^+=x y B. 4.22^-=x y C. 5.92^+-=x y D. 4.43.0^+-=x y(4) 已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )9.2A - .0B .C 3 D.152(5) 执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A.12s >B.35s >C.710s >D.45s >(6) 已知命题:p 对任意x R ∈,总有20x>; :"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ) .A p q ∧ .B p q ⌝∧⌝.C p q ⌝∧ .D p q ∧⌝(7) 某几何体的三视图如图所示,则该几何体的表面积为( )A. 54B. 60C. 66D. 72(8) 设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A. 34 B. 35 C. 49D. 3(9) 某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A. 72B. 120C. 144D.3 (10) 已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( ) A. 8)(>+c b bc B. 216b)+ab(a > C. 126≤≤abc D. 1224abc ≤≤二、填空题 本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡相应位置上.(11)设全集}9,7,5,3,1{},8,5,3,2,1{},101|{==≤≤∈=B A n N n U ,则=⋂B A C U )(______.(12) 函数)2(loglog )(2x x x f ⋅=的最小值为_________.(13) 已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且 ABC ∆为等边三角形,则实数=a _________.考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.(14) 过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C , 若6=PA ,AC =8,BC =9,则AB =________.(15) 已知直线l 的参数方程为⎩⎨⎧+=+=t y tx 32(t 为参数),以坐标原点为极点,x 正半轴为极轴线l 与曲线C 的公共点的极经=ρ________.(16) 若不等式2212122++≥++-a a x x 对任意实数x 恒成立,则实数a 的取值范围是____________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程. (17)(本小题13分,(I )小问5分,(II )小问8分)已知函数()()⎪⎭⎫⎝⎛<≤->+=220sin 3πϕπωϕω,x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π.(I )求ω和ϕ的值; (II )若⎪⎭⎫ ⎝⎛<<=⎪⎭⎫⎝⎛326432παπαf ,求⎪⎭⎫ ⎝⎛+23cos πα的值.(18) (本小题满分13分,(I )小问5分,(II )小问8分))一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列(注:若三个数c b a ,,满足c b a ≤≤,则称b 为这三个数的中位数).(19)(本小题满分12分,(1)小问6分,(2)小问7分)) 如图(19),四棱锥ABCD P -,底面是以O 为中心的菱形,⊥PO 底面ABCD , 3,2π=∠=BAD AB ,M 为BC 上一点,且AP MP BM ⊥=,21. (1)求PO 的长;(2)求二面角C PM A --的正弦值.(20)(本小题满分12分,(1)问4分,(2)问3分,(3)问5分)已知函数22()(,,)x x f x ae be cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -. (1) 确定,a b 的值;(2) 若3c =,判断()f x 的单调性; (3) 若()f x 有极值,求c 的取值范围.(21) (本小题满分12分,(1)小问5分,(2)小问7分)如题(21)图,设椭圆22221(0)x ya ba b+=>>的左右焦点分别为12,F F,点D在椭圆上,112DF F F⊥,121||22||F FDF=,12DF F∆的面积为22.(1) 求该椭圆的标准方程;(2) 是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..(22) (本小题满分12分,(1)问4分,(2)问8分)设2111,22(*)n n na a a ab n N+==-++∈(1)若1b=,求23,a a及数列{}na的通项公式;(2)若1b=-,问:是否存在实数c使得221n na c a+<<对所有*n N∈成立?证明你的结论.2014年高考重庆卷理科数学参考答案一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【答案】A【解析】..∴2)2-1(A i i i 选对应第一象限+= (2)【答案】D (3)【答案】A【解析】.∴)5.33(),(.,,0,A y x D C b a bx y 选,过中心点排除正相关则=∴>+= (4)【答案】C (5)【答案】C 【解析】.∴10787981091C S 选=•••= (6)【答案】D【解析】.∴,,D q p 选复合命题为真为假为真 (7)【答案】B【解析】原三棱柱:底面三角形两直角边为3和4,高为4;截掉高为3的上部棱锥后余下的几何体的表面积,,,侧上下2273392318152156+=•++===S S SBS S S 选侧上下∴60s =++= (8)【答案】B【解析】设m PF =1,n PF =2,且n m >,则b n m 3=+,ab mn 49=, .,35,5,4,3,34∴,2-222B a c c b a b a b a c a n m 选令解得====∴=+==(9)【答案】B【解析】先排歌舞33A ,再排其它:(1)歌舞中间有一个,插空法:.A A 1223..120)A A A A A (A ∴A A A 2 (2)222212122333222212B 选共有个:歌舞中间有=+ (10)【答案】A【解析】21-sin2C 21B)-A -sin(C sin2B sin2A C)B -sin(A sin2A +=+=+=++ nA)sinBcosBsi cosAsinB 4sinAsinB(A in 4sinBcosBs B in 4sinAcosAs cos2A)-sin2B(1cos2B)-in2A(1cos2Asin2B-sin2Acos2B -sin2B in2A 2B)sin(2A -sin2B in2A sin2C sin2B in2A ∴22+=+=+=+=++=++s s s s.1inC 8sinAsinBs ∴21inC 4sinAsinBs ===.8)(,82nC sinAsinBsi 8)(,]8,4[∈∴]2,1[∈4nC sinAsinBsi 2sin 21333222Δ成立对>+∴=≥==>+===c b bc R R bca c b bc A R R R C ab S ABC二、填空题 本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡相应位置上。
秘密★启用前2013年重庆一中高2014级高三上期半期考试 数 学 试 题 卷(理科)2013.11一.选择题(每小题5分,共50分)1.已知向量(1,)a x =,(8,4)b =,且a b ⊥,则x =( )A. 12B.2C. 2-D. 2±2. 已知全集U=R ,集合1{|0},2U x A x C A x +=≤-则集合等于( ) A .{|12}x x x <->或 B .{|12}x x x ≤->或 C .{|12}x x x ≤-≥或D .{|12}x x x <-≥或3.(原创)等比数列{}n a 中,10a >,则“13a a <”是“34a a <”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(原创)已知32()32f x x x x a =-++,若()f x 在R 上的极值点分别为,m n ,则m n +的值为( )A .2B .3C .4D .65.(原创)设,x y 满足约束条件32000,0x y x y x y --≤⎧⎪-≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为4,则a b +的值为( )A. 4B.2C.14D. 0 6. 已知三个向量(,cos )2A m a =,(,cos )2B n b =,(,cos )2Cp c =共线,其中C B A c b a ,,,,,分别是ABC ∆的三条边及相对三个角,则ABC ∆的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形7.(原创)设等差数列{}n a 的前n 项和为n S ,且15890,0S a a >+<,则使得0nn S a n +<的最小的n 为( )A .10B . 11C . 12D . 13 8.(原创)2cos10tan 20cos 20-=( )A. 1B.1229. 已知实数,x y 分别满足:3(3)2014(3)1x x -+-=,3(23)2014(23)1y y -+-=-,则2244x y x ++的最小值是( )A .0B .26C . 28D .3010. 定义数列{}n x :32111,32n nn n x x x x x +==++;数列{}n y :23211nn n x x y ++=; 数列{}n z :232132nn nn x x x z +++=;若{}n y 的前n 项的积为P ,{}n z 的前n 项的和为Q ,那么P Q +=( )A. 1B. 2C. 3D.不确定二.填空题(每小题5分,共25分)11.在等比数列{}n a 中,352,8a a ==,则7a = .12. 已知向量,a b 满足2,3a b ==,237a b +=,则,a b 的夹角为 . 13.(原创)关于x 的不等式222(log )log 0x b x c ++≤(,b c 为实常数)的解集为[2,16],则关于x 的不等式22210x x c b ++≤的解集为 .14.(原创)若直线y ax =与函数ln y x =的图象相切于点P ,则切点P 的坐标为 .15.(原创)设等差数列{}n a 有无穷多项,各项均为正数,前n 项和为n S ,,m p N *∈,且20m p +=,104S =,则m p S S ⋅的最大值为 .三.解答题(共75分)16.(13分)设函数),(cos sin 32cos 2)(2R x m m x x x x f ∈+⋅+=. (1)求()f x 的最小正周期;(2)当]2,0[π∈x 时,求实数m 的值,使函数)(x f 的值域恰为17[,],22并求此时()f x 在R 上的对称中心.17.(13分)已知}{n a 是单调递增的等差数列,首项31=a ,前n 项和为n S ;数列}{n b 是等比数列,首项.20,12,123221=+==b S b a b 且 (1)求}{}{n n b a 和的通项公式; (2)令cos()(),3nn n a c S n N π+=∈求{}n c 的前20项和20T .若ABC 的三边为增等差数列,且(g B 19.(12分)已知函数ln ()(0,)axf x a a R x=>∈,e 为自然对数的底, (1)求()f x 的最值;(2)若关于x 方程32ln 2x x ex mx =-+有两个不同解,求m 的范围.20.(12分)已知数列{}n a 的首项1,a a =其中a *∈N ,*1*,3,,31,3,.nn n nn a a l l a a a l l +⎧=∈⎪=⎨⎪+≠∈⎩N N ,令集合*{|,}n A x x a n ==∈N (1)若3a 是数列{}n a 中首次为1的项,请写出所有这样数列的前三项; (2)求证:对,k N *∀∈恒有3123k k a a +≤+成立; (3)求证:{1,2,3}A ⊆.21.(12分) 已知函数2()ln f x x x =+(1)若函数()()g x f x ax =-在定义域内为增函数,求实数a 的取值范围; (2)设2()2()3()F x f x x k x k R =--∈,若函数()F x 存在两个零点,(0)m n m n <<,且实数0x 满足02x m n =+,问:函数()F x 在00(,())x F x 处的切线能否平行于x 轴?若能,求出该切线方程;若不能,请说明理由.2013年重庆一中高2014级高三上期半期考试数 学 答 案(理科)2013.111---10:CDBAA BBCCA11. 32 12. 3π13. [2,0]- 14. (,1)e 15. 1616. (1)m x x x x f ++=cos sin 32cos 2)(2m x x +++=2sin 32cos 11)62sin(2+++=m x π∴函数)(x f 的最小正周期T=π。
(2)20π≤≤x 67626πππ≤+≤∴x 1)62sin(21≤+≤-∴πx3)(+≤≤∴m x f m 又2127)(21=≤≤m x f 故,令2,6x k k Z ππ+=∈,解得,212k x k Z ππ=-∈,对称中心为3(,)2122k ππ-。
17. 解:(1)设公差为d ,公比为q ,则22(3)12a b d q =+=,322233(3)9320S b a b d q d q +=+=++=++= 311,113d q q d +==- 2(3)(11)332312d d d d +-=+-=,232210,(37)(3)0d d d d --=+-=, {}n a 是单调递增的等差数列,0d >. 则3,2d q ==,3(1)33n a n n =+-⨯=,12n n b -=(2) cos n n n nSn c S n S n π⎧==⎨-⎩是偶,是奇 。
201232012341920246206121860330T c c c c S S S S S S a a a a =++++=-+-+--+=++++=++++=18. 解:(1)由图知:2,2ππωω==,∵()sin(2)11212f ππϕ=+=,∴2k ππϕπ+=+,即23k πϕπ=+, 由于||2πϕ<,所以3πϕ=,函数()y g x =的解析式为()sin[2()]sin(2)436g x x x πππ=-+=-。
(2)由于,,a b c 成等差,且B π<,,26B π-∈263B ππ-=,4B π∴∠=,令cos cos A C t -=,222((co sin sin )cos )s 2A C A C t ++-=+,22cos()t A C =-+=0t >,所以142t =。
19. 解:(1)0a >,定义域为(0,)+∞,'21ln ()ax f x x -=,令'()0f x =,解得e x a=,当(0,)e x a ∈时,'()0f x >;当(,)e x a ∈+∞时,'()0f x <,所以max ()()e af x f a e==;(2)由(1)可知l n 2()x f x x =在2e x =时,取得最大值2e,23222ln 2ln 2()24x e e x x ex mx x ex m x m x =-+⇔=-+=-+-,要让方程有两个不同解,结合图像可知:224e m e -<,解得224e m e <+。
20. 解:(1)2,3,1;9,3,1;(2)若k a 被3除余1,则由已知可得11k k a a +=+,2312,(2)3k k k k a a a a ++=+=+;若k a 被3除余2,则由已知可得11k k a a +=+,21(1)3k k a a +=+,31(1)13k k a a +≤++;若k a 被3除余0,则由已知可得113k k a a +=,3123k k a a +≤+;所以3123k k a a +≤+,(3)由(2)可得312(2)(3)33k k k k k a a a a a +-≥-+=-,所以,对于数列{}n a 中的任意一项k a ,“若3k a >,则3k k a a +>”. 因为*k a ∈N ,所以31k k a a +-≥.所以数列{}n a 中必存在某一项3m a ≤(否则会与上述结论矛盾!)若3m a =,则121,2m m a a ++==;若2m a =,则123,1m m a a ++==,若1m a =,则122,3m m a a ++==, 由递推关系易得{1,2,3}A ⊆.21. 解:(1)21()()ln ,()2.g x f x ax x x ax g x x a x'=-=+-=+- 由题意,知()0,(0,)g x x '≥∈+∞恒成立,即min 1(2)a x x≤+.又10,2x x x >+≥x =时等号成立.故min 1(2)x x+=a ≤(2)设()F x 在00(,())x F x 的切线平行于x 轴,其中2()2ln .F x x x kx =--结合题意,有220002ln 0,2ln 0,2,220,m m km n n kn m n x x k x ⎧--=⎪--=⎪⎪+=⎨⎪⎪--=⎪⎩ ①—②得2ln ()()().mm n m n k m n n -+-=-所以02ln2.m n k x m n=--由④得0022.k x x =- 所以2(1)2()ln .1m m m n n m n m n n--==++⑤设(0,1)m u n =∈,⑤式变为2(1)ln 0((0,1)).1u u u u --=∈+ 设2(1)ln ((0,1))1u y u u u -=-∈+, 2222212(1)2(1)(1)4(1)0,(1)(1)(1)u u u u u y u u u u u u +--+--'=-==>+++所以函数2(1)ln 1u y u u -=-+在(0,1)上单调递增,因此,1|0u y y =<=,即2(1)ln 0.1u u u --<+ 也就是,2(1)ln 1m mn m n n-<+,此式与⑤矛盾.所以()F x 在00(,())x F x 处的切线不能平行于x 轴.① ② ③④。