函数的表示法练习题
- 格式:doc
- 大小:173.30 KB
- 文档页数:3
3.1 函数的概念及其表示方法1. 函数概念的理解;2. 求函数的定义域;3. 求函数值(值域);4. 函数的三种表示方法;5. 求函数解析式;6. 分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9. 分段函数与方程、不等式综合问题一、单选题1.(2021·全国高一课时练习)设()1,01,01,0x x f x x x +>ìï==íï-<î,则()()0f f 等于( )A .1B .0C .2D .-1【答案】C 【解析】1,0()1,01,0x x f x x x +>ìï==íï-<îQ\ (0)1f =,((0))(1)112f f f ==+=.故选: C.2.(2021·浙江南湖嘉兴一中高一月考)下列函数中,与函数y =有相同定义域的是( )A.()f x =B .1()f x x=C .()||f x x =D.()f x =【答案】A 【解析】函数y =的定义域为{}0x x >;函数()f x ={}0x x >;函数1()f x x=的定义域为{}0,x x x ¹ÎR ;函数()f x x =的定义域为R ;函数()f x =定义域为{}1x x ….所以与函数y =有相同定义域的是()f x =.故选:A.3.(2021·浙江高一期中)函数1()f x x=的定义域是( )A .R B .[1,)-+¥C .(,0)(0,)-¥+¥U D .[1,0)(0,)-+¥U 【答案】D 【解析】由题意可得:10x +³,且0x ¹,得到1x ³-,且0x ¹,故选:D4.(2021·全国高一课时练习)已知函数f(x -1)=x 2-3,则f(2)的值为( )A .-2B .6C .1D .0【答案】B 【解析】令1x t -=,则1x t =+,()()213f t t \=+-,()()213f x x \=+-()()222136f \=+-=,故选B.5.(2021·全国高一课时练习)如果1f x æöç÷èø=1x x-,则当x≠0,1时,f(x)等于( )A .1xB .11x -C .11x-D .11x-【答案】B 【解析】令1x=t ,则x =1t ()1t ¹,代入1f x æöç÷èø=1x x -,则有f(t)=111t t-=11t -()1t ¹.即()()111f x x x =¹-.故选:B.6.(2021·全国高一课时练习)已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C 【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-.故选:C.7.(2021·全国高一课时练习)设函数若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2【答案】B 【解析】当0a £时,()4f a a =-=,解得4a =-;当0a >时,24()f a a ==,解得2a =±,因为0a >,所以2a =,综上,4a =-或2,故答案选B 8.(2021·全国高一)函数()f x x =+的值域是( )A .1,2éö+¥÷êëøB .1,2æù-¥çúèûC .(0,)+¥D .[1,)+¥【答案】A【解析】t =,且0t ³,则212t x +=,函数转化为2211(1)22t y t t +=+=+由0t ³,则12y ≥,即值域为1,2éö+¥÷êëø故选:A.9.(2021·浙江高一课时练习)下列函数中,不满足:(2)2()f x f x =的是( )A .()f x x =B .()f x x x=-C .()1f x x =+D .()f x x=-【答案】C 【解析】A 中()()2222f x x x f x ===,B 中()()2222f x x x f x =-=,C 中()()2212f x x f x =+¹,D 中()()222f x x f x =-=10.(2021·浙江高一课时练习)设函数()f x 的定义域是[0,1],则函数()(2)(01)f x a f x a a +++<<的定义域为( )A .1,22a a -éù-êúëûB .,12a a éù--êúëûC .[,1]a a --D .1,2a a -éù-êúëû【答案】A 【解析】由1011021220101a x ax a a a x a x a a --ì+ìï-ïï+Þ-ííïï<<î<<ïî……………………得122a a x --……故选:A 二、多选题11.(2021·广东禅城 佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )A .B .C .D .【答案】AD 【解析】在A ,D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满足函数关系,在B ,C 中,存在一个x 有两个y 与x 对应,不满足函数对应的唯一性,故选AD.12.(2021·历下 山东师范大学附中高一学业考试)已知()221f x x +=,则下列结论正确的是( )A .()34f -=B .()2214x x f x -+=C .()2f x x=D .()39f =【答案】AB 【解析】由()221f x x +=,令21x t +=,可得12t x -=,可得:()222(1)2124t t t f t --+==,即:()2214x x f x -+=,故C 不正确,B 正确;可得:()2(31)344f ---==,故A 正确;()2(31)314f -==故D 不正确;故选:AB.13.(2021·江苏姑苏 苏州中学高一期中)下列各组函数中,两个函数是同一函数的有( )A .()||f x x =与()g x =B .()1f x x =+与21()1x g x x -=-C .||()x f x x =与1,0()1,0x g x x >ì=í-<îD .()f x =()g x =【答案】AC 【解析】对A, ()g x x ==,故A 正确.对B, ()1f x x =+定义域为R ,21()1x g x x -=-定义域为{}|1x x ¹,故B 错误.对C, 1,0()1,0x xf x x x >ì==í-<î,故C 正确.对D, ()f x =210x -³,解得1x £-或1x ³.()g x =定义域为1010x x +³ìí-³î即1x ³.故D 错误.故选:AC14.(2021·全国高一课时练习)已知函数()22,1,12x x f x x x +£-ì=í-<<î,关于函数()f x 的结论正确的是( )A .()f x 的定义域为RB .()f x 的值域为(),4-¥C .()13f =D .若()3f x =,则x E.()1f x <的解集为()1,1-【答案】BD 【解析】由题意知函数()f x 的定义域为(),2-¥,故A 错误;当1x £-时,()f x 的取值范围是(],1-¥,当12x -<<时,()f x 的取值范围是[)0,4,因此()f x 的值域为(),4-¥,故B 正确;当1x =时,()2111f ==,故C 错误;当1x £-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =或x =,故D 正确;当1x £-时,21x +<,解得1x <-,当12x -<<时,21x <,解得11x -<<,因此()1f x <的解集为()(),11,1-¥--U ;故E 错误.故选:BD.三、填空题15.(2021·全国高一课时练习)下列对应或关系式中是A 到B 的函数的序号为________.①,ÎÎA R B R ,221x y +=;②A ={1,2,3,4},B ={0,1},对应关系如图:③,==A R B R ,1:2®=-f x y x ;④,==A Z B Z ,:®=f x y .【答案】②【解析】①,ÎÎA R B R ,221x y +=,存在x 对应两个y 的情况,所以不是A 到B 的函数;②符合函数的定义,是A 到B 的函数;③,==A R B R ,1:2®=-f x y x ,对于集合A 中的2x =没有对应y ,所以不是A 到B 的函数;④,==A Z B Z ,:®=f x y ,对于集合A 中的{|0,}x x x z £Î没有对应y ,所以不是A 到B的函数.故答案为:②16.(2021·浙江南湖 嘉兴一中高一月考)已知,若()()10f f a =,则a =______________.【答案】32【解析】0x >时,()20f x x =-<,∴由()10f x =知0x £,∴2110x +=,3x =-,而2()11f x x =+³,因此由()3f a =-知0a >,即23a -=-,32a =.故答案为:32.17.(2021·全国高一课时练习)已知()1,00,0x f x x ³ì=í<î则不等式()2xf x x +£的解集是________.【答案】{}|1x x £【解析】当0x ³时,()1f x =,代入()2xf x x +£,解得1x £,∴01x ££;当0x <时,()0f x =,代入()2xf x x +£,解得2x £,∴0x <;综上可知{}|1x x £.故答案为:{}|1x x £.四、双空题18.(2021·全国高一课时练习)已知f(x)=11x+ (x≠-1),g(x)=x 2+2,则f (2)=________,f(g (2))=________.【答案】13 17【解析】因为()11f x x =+,故可得()123f =;又()22g x x =+,故可得()22226g =+=;故()()()1267f g f ==.故答案为:13;17.19.(2021·安达市第七中学高一月考)设[]x 表示不超过x 的最大整数,已知函数[]()f x x x =-,则(0.5)f -=________ ;其值域为_________.【答案】0.5 [)0,1 【解析】作出函数[]()f x x x =-的图像,如图所示,由图可知(0.5)0.5(1)0.5f -=---=,其值域为[)0,1,故答案为(1). 0.5 (2). [)0,120.(2021·浙江高一期中)设函数()(2141x f x x ì<ï=í³ïî,则((0))f f =____,使得()4f a a ³的实数a 的取值范围是_____.【答案】4 1a £ 【解析】因为()(2141x f x x ì<ï=í³ïî,所以()01f =,因此((0))(1)4f f f ==;当1a <时,()4f a a ³可化为2(1)4+³a a ,即2(1)0a -³显然恒成立,所以1a <;当1a ³时,()44f a a =³,解得1a =;综上,1a £.故答案为4;1a £21.(2021·首都师范大学附属中学高一期中)已知函数22,(),x x x af x x x a ì-+£=í>î.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________.【答案】R []0,1【解析】(1)当a =1时,22,1(),1x x x f x x x ì-+£=í>î当1x >时,()1f x x =>当1x £时,22()2(1)11f x x x x =-+=--+£所以函数()f x 的值域是(1,)(,1]R+¥-¥=U (2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+³,即01x ££时,所以当01a ££时,函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+£的图像与直线y a =无公共点,因此实数a 的取值范围是[]0,1故答案为:(1). R (2). []0,1五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =3-12x ;(2)y =(3)y(4)y 1x.【答案】(1)R ;(2)10,7éùêúëû;(3)()()2,11,---+¥U ;(4)()3,00,22éö-÷êëøU .【解析】(1)因为函数y =3-12x 为一次函数,所以该函数的定义域为全体实数R ;(2)由题意可得0170x x ³ìí-³î,解得107x ££,所以该函数的定义域为10,7éùêúëû;(3)由题意得1020x x +¹ìí+>î,解得2x >-且1x ¹-,所以该函数的定义域为()()2,11,---+¥U ;(4)由题意得230200x x x +³ìï->íï¹î,解得322x -£<且0x ¹,所以该函数的定义域为()3,00,22éö-÷êëøU .23.(2021·全国高一课时练习)已知2,11()1,11,1x x f x x x ì-££ï=>íï<-î(1)画出f(x)的图象;(2)若1()4f x =,求x 的值;(3)若1()4f x ³,求x 的取值范围.【答案】(1)作图见解析;(2)12x =±;(3)11,,22æùéö-¥-È+¥ç÷úêèûëø【解析】(1)函数2y x =的对称轴0x =,当0x =时,0y =;当1x =-时,1y =;当1x =时,1y =,则f(x)的图象如图所示.(2)1()4f x=等价于21114xx-££ìïí=ïî①或1114x>ìïí=ïî②或1114x<-ìïí=ïî③解①得12x=±,②③的解集都为Æ∴当1()4f x=时,12x=±.(3)由于1124fæö±=ç÷èø,结合此函数图象可知,使1()4f x³的x的取值范围是11,,22æùéö-¥-È+¥ç÷úêèûëø24.(2021·全国高一课时练习)根据下列条件,求f(x)的解析式.(1)f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9;(2)f(x+1)=x2+4x+1;(3)12()(0) f f x x xxæö+=¹ç÷èø.【答案】(1)f(x)=x+3;(2)f(x)=x2+2x-2;(3)2()(0)33xf x xx=-¹【解析】(1)解由题意,设f(x)=ax+b(a≠0)∵3f(x+1)-f(x)=2x+9∴3a(x+1)+3b-ax-b=2x+9,即2ax+3a+2b=2x+9,由恒等式性质,得22 329 aa b=ìí+=î∴a=1,b=3∴所求函数解析式为f(x)=x+3.(2)设x+1=t,则x=t-1f(t)=(t-1)2+4(t-1)+1即f(t)=t2+2t-2.∴所求函数解析式为f(x)=x2+2x-2.(3)解1 ()2f x f xxæö+=ç÷èøQ,将原式中的x与1x互换,得112()f f xx xæö+=ç÷èø.于是得关于f(x)的方程组()()12112f x f x x f f x x x ìæö+=ç÷ïïèøíæöï+=ç÷ïèøî解得2()(0)33x f x x x =-¹.25.(2021·全国高一课时练习)已知函数22,2()2,2x x f x x x £ì=í+>î(1)若0)(8f x =,求0x 的值;(2)解不等式()8f x >.【答案】(1)0x =;(2){|>x x .【解析】(1)当02x £时,由02=8x ,得04x =,不符合题意;当02x >时,由2028+=x,得0x =0x =舍去),故0x =(2)()8f x >等价于228x x £ìí>î ——①或2228x x >ìí+>î——②解①得x f Î,解②得>x ,综合①②知()8f x >的解集为{|>x x .26.(2021·全国高一)已知(1)f x +的定义域为(2,4),(1)求()f x 的定义域;(2)求(2)f x 的定义域【答案】(1)(3,5);(2)35,22æöç÷èø.【解析】(1))1(f x +Q 的定义域为(2,4),24x \<<,则315x <+<,即()f x 的定义域为(3,5);(2)()f x Q 的定义域为(3,5);\由325x <<得3522x <<,即(2)f x 的定义域为35,22æöç÷èø.27.(2021·全国高一)若函数()f x =的定义域为R ,则m 的取值范围为多少?【答案】112mm ìü>íýîþ∣.【解析】Q 函数()f x =的定义域为R ,230mx x \++¹,若0m =,则3x ¹-,不满足条件.,若0m ¹,则判别式1120m D =-<,解得112m >,即1|12m m ìü>íýîþ。
表示函数的方法练习含答案1.已知函数f (x )由下表给出,则f (2)=( ).A .1B .2C 2.y =f (x )的图象如图,则函数的定义域是( ).A .[-5,6)B .[-5,0]∪[2,6]C .[-5,0)∪[2,6)D .[-5,0]∪[2,6)3.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ).A .y =50x (x >0)B .y =100x (x >0)C .50y x =(x >0) D .100y x=(x >0) 4.已知()2xf x x =+,则f (f (-1))的值为( ). A .0 B .1 C .-1 D .25.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,下图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图象是( ).6.已知111f x x ⎛⎫=⎪+⎝⎭,则f (x )=________. 7.已知函数f (x )满足f (x -1)=x 2,那么f (2)=__________.8.某班连续进行了5次数学测试,其中智方同学的成绩如表所示,在这个函数中,定义域是__________,值域是__________.9资的方式是:第一个月1 000元,以后每个月比上一个月多100元.设该大学生试用期的第x个月的工资为y元,则y是x的函数,分别用列表法、图象法和解析法表示该函数关系.10.已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.参考答案1. 答案:C2. 答案:D3. 答案:C 解析:依题意有12(x +3x )y =100,所以xy =50,50y x =,且x >0,故y 与x 的函数关系式是50y x=(x >0). 4. 答案:C 解析:∵()2x f x x =+,∴f (-1)=112--+=-1. ∴f (f (-1))=f (-1)=112--+=-1. 5. 答案:D解析:(1)开始乘车速度较快,后来步行,速度较慢;(2)开始某人离乙地最远,以后越来越近,最后到达乙地,符合(1)的只有C ,D ,符合(2)的只有B ,D .6. 答案:1x x + 解析:令1t x =,则1x t =,将1x t=代入111f x x⎛⎫= ⎪+⎝⎭,得()1111tf t t t==++.∴()1x f x x =+.7. 答案:9解析:令x -1=2,则x =3,而32=9,所以f (2)=9. 8. 答案:{1, 2,3,4,5} {90,92,93,94,95} 9. 解:(1)该函数关系用列表法表示为:(2)(3)该函数关系用解析法表示为:y=100x+900,x∈{1,2,3,…,6}.10.解:设f(x)=ax2+bx+c(a≠0),∵f(0)=1,∴c=1.又∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,即2ax+(a+b)=2x.∴22aa b=⎧⎨+=⎩,,解得a=1,b=-1.∴f(x)=x2-x+1.。
高中数学:函数的表示法练习及答案函数的表示法1.下表表示y是x的函数,则函数的值域是()A.[2,5]B.{2,3,4,5}C.(0,20]D.N2.若关于x的方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象可以是()A.选项AB.选项BC.选项CD.选项D3.甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点4.已知函数f(x)满足:f()=8x2-2x-1,则f(x)等于()A.2x4+3x2B.2x4-3x2C.4x4+x2D.4x4-x25.已知f(x+1)=2x2+1,则f(x-1)=____________.6.某企业生产某种产品时的能耗y与产品件数x之间的关系式为y=ax+.且当x=2时,y=100;当x=7时,y=35.且此产品生产件数不超过20件.(1)写出函数y关于x的解析式;(2)用列表法表示此函数,并画出图象.求函数的解析式7.已知二次函数图象的顶点坐标为(1,1),且过(2,2)点,则该二次函数的解析式为()A.y=x2-1B.y=-(x-1)2+1C.y=(x-1)2+1D.y=(x-1)2-18.如果二次函数的二次项系数为1,图象开口向上,且关于直线x=1对称,并过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-19.已知f(x-1)=x2,则f(x)的解析式为()A.f(x)=x2-2x-1B.f(x)=x2-2x+1C.f(x)=x2+2x-1D.f(x)=x2+2x+120.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)等于()A.x-1B.x+1C.2x+1D.3x+321.已知函数y=f(x)的图象关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=,则当x∈(-∞,-2)时,f(x)的解析式为()A.f(x)=-B.f(x)=-C.f(x)=D.f(x)=-22.某学校要召开学生代表大会,规定各班每10人推选一位代表,当各班人数除以10的余数大于6时再增选一位代表,那么各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[]B.y=[]C.y=[]D.y=[]23.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是________.24.已知函数f(x)=x2+(a+1)x+b满足f(3)=3,且f(x)≥x恒成立,求f(x)的解析式.25.根据下列条件,求f(x)的解析式:2f()+f(x)=x(x≠0).26.如果函数f(x)满足af(x)+f=ax,x≠0,a为常数,a≠1且a≠-1,求f(x).27.(1)已知函数f(x)=x2,g(x)为一次函数,且一次项系数大于0,若f(g(x))=4x2-20x+25,求g(x)的解析式.(2)求满足f()=-1的函数f(x).(3)已知f(x)满足3f(x)+2f(-x)=4x,求f(x)的解析式.28.求下列函数解析式.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);30.已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求解析式f(x);(2)当x∈[-1,1]时,函数y=f(x)的图象恒在函数y=2x+m的图象的上方,求实数m的取值范围.31.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1)的值;又若f(0)=a,求f(a)的值;(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.32.如图,ABCD是边长为1的正方形,M是CD的中点,点P沿着路径A→B→C→M在正方形边上运动所经过的路程为x,△APM的面积为y.(1)求y=f(x)的解析式及定义域;(2)求△APM面积的最大值及此时点P位置.33.某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖挂4节车厢,一天能来回16次,如果该车每次拖挂7节车厢,则每天能来回10次.(1)若每天来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数的解析式和定义域;(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.函数图像34.给下图的容器甲均匀地注入水时,下面图象中哪一个图象可以大致刻画容器中水的高度与时间的函数关系()A. B. C. D.35.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是()A.0B.1C.2D.336.图中的阴影部分由底为1,高为1的等腰三角形及高为2和3的两矩形所构成.设函数S=S(a)(a≥0)是图中阴影部分介于平行线y=0及y=a之间的那一部分的面积,则函数S(a)的图象大致为()A. B. C. D.37.如图,正方形ABCD的顶点A(0,),B(,0),顶点C、D位于第一象限,直线l:x=t(0≤t≤)将正方形ABCD分成两个部分,记位于直线l左侧阴影部分的面积为f(t),则函数S=f(t)的图象大致是()A. B. C. D.38.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的为()A.①②③④B.①②③C.②③D.②39.函数y=f(x)与y=g(x)的图象如图所示,则函数y=f(x)·g(x)的图象可能是()A. B. C. D.40.设f(x)=x2,在同一坐标系中画出:(1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系;(2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.41.画出y=(x+1)2与y=x2-1的大致图象,并说明这两个图象可由y=x2的图象经过怎样的变换得到.42.画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.答案1.下表表示y是x的函数,则函数的值域是()A.[2,5]B.{2,3,4,5}C.(0,20]D.N【答案】B2.若关于x的方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象可以是()A.选项AB.选项BC.选项CD.选项D【答案】D【解析】因为关于x的方程f(x)-2=0在(-∞,0)内有解,所以函数y=f(x)与y=2的图象在(-∞,0)内有交点,观察图象可知只有D中图象满足要求.3.甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点【答案】D【解析】从图中的直线看出:v甲>v乙,s甲=s乙,甲、乙同时出发,跑了相同的路程,甲比乙先到达.故选D.4.已知函数f(x)满足:f()=8x2-2x-1,则f(x)等于()A.2x4+3x2B.2x4-3x2C.4x4+x2D.4x4-x2【答案】A【解析】令t=,得x=,故有f(t)=8×-2×-1,整理得f(t)=2t4+3t2,即f(x)=2x4+3x2.故选A.5.已知f(x+1)=2x2+1,则f(x-1)=____________.【答案】2x2-8x+9【解析】设x+1=t,则x=t-1,f(t)=2(t-1)2+1=2t2-4t+3,f(x-1)=2(x-1)2-4(x-1)+3=2x2-4x+2-4x+4+3=2x2-8x+9.故答案为2x2-8x+9.6.某企业生产某种产品时的能耗y与产品件数x之间的关系式为y=ax+.且当x=2时,y=100;当x=7时,y=35.且此产品生产件数不超过20件.(1)写出函数y关于x的解析式;(2)用列表法表示此函数,并画出图象.【答案】(1)将代入y=ax+中,得⇒⇒所以所求函数解析式为y=x+(x∈N,0<x≤20).(2)当x∈{1,2,3,4,5,…,20}时,列表:依据上表,画出函数y的图象如图所示.求函数的解析式7.已知二次函数图象的顶点坐标为(1,1),且过(2,2)点,则该二次函数的解析式为()A.y=x2-1B.y=-(x-1)2+1C.y=(x-1)2+1D.y=(x-1)2-1【答案】C【解析】设二次函数为y=a(x-1)2+1,将(2,2)代入上式,得a=1.所以y=(x-1)2+1.8.如果二次函数的二次项系数为1,图象开口向上,且关于直线x=1对称,并过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1【答案】D【解析】根据已知选项可设f(x)=(x-1)2+c.由于点(0,0)在二次函数的图象上,∴f(0)=(0-1)2+c=1+c=0,∴c=-1,∴f(x)=(x-1)2-1.9.已知f(x-1)=x2,则f(x)的解析式为()A.f(x)=x2-2x-1B.f(x)=x2-2x+1C.f(x)=x2+2x-1D.f(x)=x2+2x+1【答案】D【解析】令x-1=t,则x=t+1,∴f(t)=(t+1)2=t2+2t+1,即f(x)=x2+2x+1.20.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)等于()A.x-1B.x+1C.2x+1D.3x+3【答案】B【解析】∵2f(x)-f(-x)=3x+1,①将①中x换为-x,则有2f(-x)-f(x)=-3x+1,②①×2+②得3f(x)=3x+3,∴f(x)=x+1.21.已知函数y=f(x)的图象关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=,则当x∈(-∞,-2)时,f(x)的解析式为()A.f(x)=-B.f(x)=-C.f(x)=D.f(x)=-【答案】D【解析】设x<-2,则-x-2>0,由函数y=f(x)的图象关于x=-1对称,得f(x)=f(-x-2)=,所以f(x)=-.22.某学校要召开学生代表大会,规定各班每10人推选一位代表,当各班人数除以10的余数大于6时再增选一位代表,那么各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[]B.y=[]C.y=[]D.y=[]【答案】B【解析】当x=56时,y=5,排除C,D;当x=57时,y=6,排除A.∴只有B正确.23.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是________.【答案】f(x)=3x+2【解析】令3x+2=t,则3x=t-2,故f(t)=3(t-2)+8=3t+2.24.已知函数f(x)=x2+(a+1)x+b满足f(3)=3,且f(x)≥x恒成立,求f(x)的解析式. 【答案】由f(3)=3,得b=-3a-9.由f(x)≥x恒成立可知,x2+ax+b≥0恒成立,所以a2-4b≤0,所以a2+12a+36=(a+6)2≤0,所以a=-6,b=9.所以f(x)=x2-5x+9.25.根据下列条件,求f(x)的解析式:2f()+f(x)=x(x≠0).【答案】∵f(x)+2f()=x,将原式中的x与互换,得f()+2f(x)=.于是得关于f(x)的方程组解得f(x)=-(x≠0).26.如果函数f(x)满足af(x)+f=ax,x≠0,a为常数,a≠1且a≠-1,求f(x).【答案】因为af(x)+f()=ax,将x换成得af()+f(x)=a·,由两式消去f,得(a2-1)f(x)=a2x-,由a≠1且a≠-1,得f(x)=,所以f(x)=(x∈R且x≠0).27.(1)已知函数f(x)=x2,g(x)为一次函数,且一次项系数大于0,若f(g(x))=4x2-20x+25,求g(x)的解析式.(2)求满足f()=-1的函数f(x).(3)已知f(x)满足3f(x)+2f(-x)=4x,求f(x)的解析式.【答案】(1)因为g(x)为一次函数,且一次项系数大于0,所以设g(x)=ax+b(a>0).因为f(x)=x2,f(g(x))=4x2-20x+25,所以(ax+b)2=4x2-20x+25,即a2x2+2abx+b2=4x2-20x+25(a>0),解得a=2,b=-5,所以g(x)=2x-5.(2)令t=1+(x≠0),则x=(t≠1),所以f(t)=(t-1)2-1=t2-2t(t≠1),所以f(x)=x2-2x(x≠1).(3)由题意得3f(x)+2f(-x)=4x,①用-x代替x,得3f(-x)+2f(x)=-4x,②①×3-②×2,得5f(x)=20x,所以f(x)=4x.28.求下列函数解析式.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);【答案】设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17,∴a=2,b=7,∴f(x)=2x+7.29.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f (x)=2x有两等根.(1)求f(x)的解析式;(2)求f(x)在[0,t]上的最大值.【答案】(1)∵方程f(x)=2x有两等根,即ax2+(b-2)x=0有两等根,∴Δ=(b-2)2=0,解得b=2.由f(x-1)=f(3-x),得=1,∴x=1是函数图象的对称轴,而此函数图象的对称轴是直线x=-,∴-=1,∴a=-1,故f(x)=-x2+2x.(2)∵函数f(x)=-x2+2x的图象的对称轴为x=1,x∈[0,t],∴当t≤1时,f(x)在[0,t]上是增函数,∴f(x)max=-t2+2t.当t>1时,f(x)在[0,1]上是增函数,在[1,t]上是减函数,∴f(a)max=f(1)=1.综上,f(x)max=30.已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求解析式f(x);(2)当x∈[-1,1]时,函数y=f(x)的图象恒在函数y=2x+m的图象的上方,求实数m的取值范围. 【答案】(1)由f(x+1)-f(x)=2x,令x=0,得f(1)=1;令x=-1,得f(-1)=3.设f(x)=ax2+bx+c,故解得故f(x)的解析式为f(x)=x2-x+1.(2)因为y=f(x)的图象恒在y=2x+m的图象上方,所以在[-1,1]上,x2-x+1>2x+m恒成立.即x2-3x+1>m在区间[-1,1]恒成立.所以令g(x)=x2-3x+1=(x-)2-,故g(x)在[-1,1]上的最小值为g(1)=-1 ,所以m<-1 .31.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1)的值;又若f(0)=a,求f(a)的值;(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.【答案】(1)∵对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,∴f(f(2)-22+2)=f(2)-22+2.又由f(2)=3,得f(3-22+2)=3-22+2,即f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)∵对任意f(f(x)-x2+x)=f(x)-x2+x,又∵有且只有一个实数x0,使得f(x0)=x0,∴对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,得f(x0)-+x0=x0.又∵f(x0)=x0,∴x0-=0,故x0=0或x0=1.若x0=0,则f(x)-x2+x=0,即f(x)=x2-x.但方程x2-x=x有两个不同的实根,与题设条件矛盾,故x0≠0.若x0=1,则f(x)-x2+x=1,即f(x)=x2-x+1.易验证该函数满足题设条件.综上可知,所求函数的解析式为f(x)=x2-x+1(x∈R).32.如图,ABCD是边长为1的正方形,M是CD的中点,点P沿着路径A→B→C→M在正方形边上运动所经过的路程为x,△APM的面积为y.(1)求y=f(x)的解析式及定义域;(2)求△APM面积的最大值及此时点P位置.【答案】(1)根据题意得f(x)=f(x)的定义域为(0,1)∪[1,2)∪[2,)=(0,).(2)易知f(x)在(0,1)上为增函数,在[1,)上为减函数,∴当x=1时,f(x)max=-=.33.某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖挂4节车厢,一天能来回16次,如果该车每次拖挂7节车厢,则每天能来回10次. (1)若每天来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数的解析式和定义域;(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.【答案】(1)设每天来回y次,每次拖挂x节车厢,由题意设y=kx+b(k≠0),当x=4时,y=16,当x=7时,y=10,得到16=4k+b,10=7k+b,解得k=-2,b=24,∴y=-2x+24.依题意有解得定义域为{x∈N|0≤x≤12}.(2)设每天来回y次,每次拖挂x节车厢,由题意知,每天拖挂车厢最多时,运营人数最多,设每天拖挂S节车厢,则S=xy=x(-2x+24)=-2x2+24x=-2(x-6)2+72,x∈[0,12]且x∈N.所以当x=6时,S max=72,此时y=12,则每日最多运营人数为110×72=7 920.故这列火车每天来回12次,才能使运营人数最多,每天最多运营人数为7 920.函数图像34.给下图的容器甲均匀地注入水时,下面图象中哪一个图象可以大致刻画容器中水的高度与时间的函数关系()A. B. C. D.【答案】B【解析】容器下端较窄,上端较宽,当均匀地注入水时,刚开始的一段时间高度变化较大,随着时间的推移,高度的变化速度开始减小,四个图象中只有B项符合特点.35.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是()A.0B.1C.2D.3【答案】B【解析】由题意可知在0点到3点这段时间,每小时蓄水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.36.图中的阴影部分由底为1,高为1的等腰三角形及高为2和3的两矩形所构成.设函数S=S(a)(a≥0)是图中阴影部分介于平行线y=0及y=a之间的那一部分的面积,则函数S(a)的图象大致为()A. B. C. D.【答案】C【解析】根据图象可知在[0,1]上面积增长的速度变慢,在图形上反映出切线的斜率在变小;在[1,2]上面积增长速度恒定,在[2,3]上面积增长速度恒定,而在[1,2]上面积增长速度大于在[2,3]上面积增长速度,故选C.37.如图,正方形ABCD的顶点A(0,),B(,0),顶点C、D位于第一象限,直线l:x=t(0≤t≤)将正方形ABCD分成两个部分,记位于直线l左侧阴影部分的面积为f(t),则函数S=f(t)的图象大致是()A. B. C. D.【答案】C【解析】当0≤t≤时,S(t)=×t×2t=t2;当<t≤时,S(t)=1-×(-t)×2(-t)=-(t-)2+1.故选C.38.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的为()A.①②③④B.①②③C.②③D.②【答案】C【解析】①的定义域不是M;④不是函数.39.函数y=f(x)与y=g(x)的图象如图所示,则函数y=f(x)·g(x)的图象可能是()A. B. C. D.【答案】A【解析】函数y=f(x)·g(x)的定义域是函数y=f(x)与y=g(x)的定义域的交集(-∞,0)∪(0,+∞),图象不经过坐标原点,故可以排除C、D,由题干中图象知函数y=f(x)是偶函数,y=g(x)是奇函数,所以y=f(x)·g(x)是奇函数,故选A.40.设f(x)=x2,在同一坐标系中画出:(1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系;(2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.【答案】解(1)如图(2)如图观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到;y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到;y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到.41.画出y=(x+1)2与y=x2-1的大致图象,并说明这两个图象可由y=x2的图象经过怎样的变换得到. 【答案】如图所示,在同一平面直角坐标系下,画出y=x2,y=(x+1)2及y=x2-1的大致图象.观察图象可知y=(x+1)2的图象可由y=x2的图象向左平移1个单位长度得到,y=x2-1的图象可由y=x2的图象向下平移1个单位长度得到.42.画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.【答案】因为函数f(x)=-x2+2x+3的定义域为R,列表:连线,描点,得函数图象如图:(1)根据图象,容易发现f(0)=3,f(1)=4,f(3)=0,所以f(3)<f(0)<f(1).(2)根据图象,容易发现当x1<x2<1时,有f(x1)<f(x2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].21/ 21。
函数表示方法练习题在数学学习过程中,函数表示方法是一个重要的概念。
通过不同的方式表示函数,可以更好地理解函数的性质和特点。
本文将通过一系列练习题来帮助读者巩固函数表示方法的理解。
1. 设函数f(x)在区间[0, 2]上连续,且f(0) = 2, f(2) = 6。
试确定f(x)的一个表示方法。
解析:根据所给条件,我们可以确定函数f(x)的两个点:(0, 2)和(2, 6)。
因为函数f(x)在[0, 2]上连续,我们可以使用线性插值的方法得到函数f(x)的表示方法。
线性插值的思想是通过已知点之间的线性关系来表示函数。
由于函数f(x)在(0, 2)和(2, 6)两点上的斜率相同,我们可以得到函数f(x)的表示方法为f(x) = 2 + (x-0) * (6-2) / (2-0) = 2 + 2x。
2. 设函数g(x)的定义域为实数集R,满足g(x + 2) = 2g(x) + 1。
试确定g(x)的一个表示方法。
解析:我们可以通过观察左边和右边的函数式来寻找函数g(x)的表示方法。
注意到g(x + 2)的形式与g(x)相似,我们可以猜测g(x) = 2g(x-2) + 1。
为了验证这个猜测,我们将它代入原函数式中:左边:g(x + 2) = 2g(x + 2 - 2) + 1 = 2g(x) + 1右边:2g(x) + 1由于左边和右边相等,我们可以得出g(x) = 2g(x-2) + 1是函数g(x)的一个表示方法。
3. 设函数h(x)在定义域[1, 3]上连续,且满足h(1) = 2, h(2) = 3, h(3) = 4。
试确定h(x)的一个表示方法。
解析:由所给条件,我们可以确定函数h(x)的三个点:(1, 2), (2, 3)和(3, 4)。
因为函数h(x)在[1, 3]上连续,我们可以使用二次插值的方法得到函数h(x)的表示方法。
二次插值的思想是通过已知点之间的二次曲线来表示函数。
我们可以构造二次多项式h(x) = ax^2 + bx + c,代入已知点进行求解:当x = 1时,2 = a + b + c (1)当x = 2时,3 = 4a + 2b + c (2)当x = 3时,4 = 9a + 3b + c (3)通过解这个线性方程组,我们可以得到a = 1, b = -3, c = 4。
2023年中考数学----《函数基础知识--函数的三种表示方法》知识点总结与专项练习题(含答案解析)知识点总结1. 解析式法表达函数:根据题意列函数表达式。
函数表达式等号左边不能出现平方与绝对值以及正负号,右边不能出现正负号。
2. 列表法表达函数:表格中不同自变量不能对应同一函数值。
3. 图像法表达函数:①判断图像是否为函数图像,只需做一条与x 轴垂直的直线,看直线与图像的交点个数,若出现两个即两个以上的交点,则不是函数图像。
②函数图像与信息表达。
练习题1、(2022•益阳)已知一个函数的因变量y 与自变量x 的几组对应值如表,则这个函数的表达式可以是( )A .y =2xB .y =x ﹣1C .y =x 2D .y =x 2【分析】观察表中x ,y 的对应值可以看出,y 的值恰好是x 值的2倍.从而求出y 与x 的函数表达式.【解答】解:根据表中数据可以看出:y 的值是x 值的2倍.∴y =2x .故选:A .2、(2022•大连)汽车油箱中有汽油30L .如果不再加油,那么油箱中的油量y (单位:L )随行驶路程x (单位:km )的增加而减少,平均耗油量为0.1L /km .当0≤x ≤300时,y 与x 的函数解析式是( )A .y =0.1xB .y =﹣0.1x +30C .y =x 300D .y =﹣0.1x 2+30x【分析】直接利用油箱中的油量y =总油量﹣耗油量,进而得出函数关系式,即可得出答案.【解答】解:由题意可得:y =30﹣0.1x ,(0≤x ≤300).故选:B .3、(2022•常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .y =x +50B .y =50xC .y =x 50D .y =50x 【分析】根据题意列出函数关系式即可得出答案.【解答】解:由城市市区人口x 万人,市区绿地面积50万平方米,则平均每人拥有绿地y =.故选:C .4、(2022•巴中)甲、乙两人沿同一直道从A 地到B 地,在整个行程中,甲、乙离A 地的距离S 与时间t 之间的函数关系如图所示,下列说法错误的是( )A .甲比乙早1分钟出发B .乙的速度是甲的速度的2倍C .若甲比乙晚5分钟到达,则甲用时10分钟D .若甲出发时的速度为原来的2倍,则甲比乙提前1分钟到达B地【分析】根据函数图象得出甲比乙早1分钟出发,及列一元一次方程依次进行判断即可.【解答】解:A 、由图象得,甲比乙早1分钟出发,选项正确,不符合题意;B 、由图可得,甲乙在t =2时相遇,甲行驶的时间为2分钟,乙行驶的时间为1分钟,路程相同,∴乙的速度是甲的速度的2倍,选项正确,不符合题意;C 、设乙用时x 分钟到达,则甲用时(x +5+1)分钟,由B 得,乙的速度是甲速度的2倍,∴乙用的时间是甲用的时间的一半,∴2x =x +5+1,解得:x=6,∴甲用时12分钟,选项错误,符合题意;D、若甲出发时的速度为原来的2倍,此时甲乙速度相同,∵甲比乙早1分钟出发,∴甲比乙提前1分钟到达B地,选项正确,不符合题意;故选:C.5、(2022•青海)2022年2月5日,电影《长津湖》在青海剧场首映,小李一家开车去观看.最初以某一速度匀速行驶,中途停车加油耽误了十几分钟,为了按时到达剧场,小李在不违反交通规则的前提下加快了速度,仍保持匀速行驶.在此行驶过程中,汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系的大致图象是()A.B.C.D.【分析】首先看清横轴和纵轴表示的量,然后根据实际情况:汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系采用排除法求解即可.【解答】解:随着时间的增多,汽车离剧场的距离y(千米)减少,排除A、C、D;由于途中停车加油耽误了几分钟,此时时间在增多,汽车离剧场的距离y没有变化;后来加快了速度,仍保持匀速行进,所以后来的函数图象的走势应比前面匀速前进的走势要陡.故选:B.6、(2022•河池)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【解答】解:因为底部的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.7、(2022•烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图象如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为()A.12B.16C.20D.24【分析】先求出二人速度,即可得20分钟二人所走路程之和,再总结出第n次迎面相遇时,两人所走路程之和(400n﹣200)米,列方程求出n的值,即可得答案.【解答】解:由图可知,父子速度分别为:200×2÷120=(米/秒)和200÷100=2(米/秒),∴20分钟父子所走路程和为20×60×(+2)=6400(米),父子二人第一次迎面相遇时,两人所走路程之和为200米,父子二人第二次迎面相遇时,两人所走路程之和为200×2+200=600(米),父子二人第三次迎面相遇时,两人所走路程之和为400×2+200=1000(米),父子二人第四次迎面相遇时,两人所走路程之和为600×2+200=1400(米),…父子二人第n次迎面相遇时,两人所走路程之和为200(n﹣1)×2+200=(400n﹣200)米,令400n﹣200=6400,解得n=16.5,∴父子二人迎面相遇的次数为16,故选:B.8、(2022•潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现()A.海拔越高,大气压越大B.图中曲线是反比例函数的图象C.海拔为4千米时,大气压约为70千帕D.图中曲线表达了大气压和海拔两个量之间的变化关系【分析】根据图中数据,进行分析确定答案即可.【解答】解:海拔越高大气压越低,A选项不符合题意;代值图中点(2,80)和(4,60),由横、纵坐标之积不同,说明图中曲线不是反比例函数的图象,B选项不符合题意;海拔为4千米时,图中读数可知大气压应该是60千帕左右,C选项不符合题意;图中曲线表达的是大气压与海拔两个量之间的变化关系,D选项符合题意.故选:D.9、(2022•北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③【分析】(1)根据汽车的剩余路程y随行驶时间x的增加而减小判断即可;(2)根据水箱中的剩余水量y随放水时间x的增大而减小判断即可;(3)根据矩形的面积公式判断即可.【解答】解:汽车从A地匀速行驶到B地,根据汽车的剩余路程y随行驶时间x的增加而减小,故①符合题意;将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y随放水时间x的增大而减小,故②符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形面积是长x的二次函数,故③不符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是①②.故选:A.10、(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A.B.C.D.【分析】利用函数的定义,根据数形结合的思想求解.【解答】解:因为极差是该段时间内的最大值与最小值的差.所以当t从0到5时,极差逐渐增大;t从5到气温为20℃时,极差不变;当气温从20℃到28℃时极差达到最大值.直到24时都不变.只有A符合.故选:A.11、(2022•哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为()A.150km B.165km C.125km D.350km【分析】由图象可知,汽车行驶10km耗油1L,据此解答即可.【解答】解:当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为:(50﹣35)×(500÷50)=150(km),故选:A.12、(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是()A.甲车行驶到距A城240km处,被乙车追上B.A城与B城的距离是300kmC.乙车的平均速度是80km/hD.甲车比乙车早到B城【分析】根据“速度=路程÷时间”,得出两车的速度,再逐一判断即可.【解答】解:由题意可知,A城与B城的距离是300km,故选项B不合题意;甲车的平均速度是:300÷5=60(km/h),乙车的平均速度是:240÷(4﹣1)=80(km/h),故选项C不合题意;设乙车出发x小时后追上甲车,则60(x+1)=80x,解得x=3,60×4=240(km),即甲车行驶到距A城240km处,被乙车追上,故选项A不合题意;由题意可知,乙车比甲车早到B城,故选项D符合题意.故选:D.13、(2022•湖北)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()A.B.C.D.【分析】根据题意,列出函数解析式,再选择出适合的图象.【解答】解:由题意得:当0≤t<1时,S=4﹣t,当1≤t≤2时,S=3,当2<<t≤3时,S=t+1,故选:A.14、(2022•雅安)一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况()A.B.C.D.【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速,加速、匀速的变化情况,进行选择.【解答】解:公共汽车经历加速、匀速、减速到站,加速、匀速的过程,故选:B.15、(2022•永州)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y 米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是()A.B.C.D.【分析】根据已知,结合各选项y与x的关系图象即可得到答案.【解答】解:根据已知0≤x≤30时,y随x的增大而增大,当30<x≤90时,y是一个定值,当90<x≤135时,y随x的增大而减小,∴能大致反映y与x关系的是A,故选:A.17、(2022•宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()A .50m /minB .40m /minC .7200m /minD .20m /min【分析】根据小强匀速步行时的函数图象为直线,根据图象得出结论即可.【解答】解:由函数图象知,从30﹣70分钟时间段小强匀速步行,∴这一时间段小强的步行速度为=20(m /min ), 故选:D .18、(2022•随州)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离,则下列结论不正确的是( )A .张强从家到体育场用了15minB .体育场离文具店1.5kmC .张强在文具店停留了20minD .张强从文具店回家用了35min【分析】由函数图象分别得出选项的结论然后作出判断即可.【解答】解:由图象知,A 、张强从家到体育场用了15min ,故A 选项不符合题意;B 、体育场离文具店2.5﹣1.5=1(km ),故B 选项符合题意;C 、张强在文具店停留了65﹣45=20(min ),故C 选项不符合题意;D 、张强从文具店回家用了100﹣65=35(min ),故D 选项不符合题意;故选:B .19、(2022•台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.【分析】在不同时间段中,找出y的值,即可求解.【解答】解:吴老师从家出发匀速步行8min到公园,则y的值由400变为0,吴老师在公园停留4min,则y的值仍然为0,吴老师从公园匀速步行6min到学校,则在18分钟时,y的值为600,故选:C.20、(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是平缓,稍陡,陡;即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.则相应的排列顺序就为选项A.故选:A.21、(2022•江西)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至t2℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等【分析】利用函数图象的意义可得答案.【解答】解:由图象可知,A、B、C都正确,当温度为t1℃时,甲、乙的溶解度都为30g,故D错误,故选:D.22、(2022•重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.23、(2022•西藏)周末时,达瓦在体育公园骑自行车锻炼身体,他匀速骑行了一段时间后停车休息,之后继续以原来的速度骑行.路程s(单位:千米)与时间t(单位:分钟)的关系如图所示,则图中的a=.【分析】根据函数图象可知,达瓦20分钟所走的路程为6千米,可得速度为6÷20=0.3千米/分钟,20~35分钟休息,求出继续骑行9千米的时间即可.【解答】解:由达瓦20分钟所走的路程为6千米,可得速度为6÷20=0.3(千米/分钟),休息15分钟后又骑行了9千米所用时间为9÷0.3=30(分钟),∴a=35+30=65.故答案为:65.。
函数的表示法训练题(附答案)1.下列各图中,不能是函数f(x)图象的是()解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f(1x)=11+x,则f(x)等于()A.11+x(x≠-1)B.1+xx(x≠0)C.x1+x(x≠0且x≠-1)D.1+x(x≠-1)解析:选C.f(1x)=11+x=1x1+1x(x≠0),∴f(t)=t1+t(t≠0且t≠-1),∴f(x)=x1+x(x≠0且x≠-1).3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=() A.3x+2B.3x-2C.2x+3D.2x-3解析:选B.设f(x)=kx+b(k≠0),∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.4.已知f(2x)=x2-x-1,则f(x)=________.解析:令2x=t,则x=t2,∴f(t)=t22-t2-1,即f(x)=x24-x2-1.答案:x24-x2-11.下列表格中的x与y能构成函数的是()A.x非负数非正数y1-1B.x奇数0偶数y10-1C.x有理数无理数y1-1D.x自然数整数有理数y10-1解析:选C.A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、有理数之间存在包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A、B、D均不正确.2.若f(1-2x)=1-x2x2(x≠0),那么f(12)等于()A.1B.3C.15D.30解析:选C.法一:令1-2x=t,则x=1-t2(t≠1),∴f(t)=--1,∴f(12)=16-1=15.法二:令1-2x=12,得x=14,∴f(12)=16-1=15.3.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()A.2x+1B.2x-1C.2x-3D.2x+7解析:选B.∵g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是()解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A、C,又一开始跑步,速度快,所以D符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1解析:选D.设f(x)=(x-1)2+c,由于点(0,0)在函数图象上,∴f(0)=(0-1)2+c=0,∴c=-1,∴f(x)=(x-1)2-1.6.已知正方形的周长为x,它的外接圆的半径为y,则y关于x的函数解析式为()A.y=12x(x>0)B.y=24x(x>0)C.y=28x(x>0)D.y=216x(x>0)解析:选C.设正方形的边长为a,则4a=x,a=x4,其外接圆的直径刚好为正方形的一条对角线长.故2a=2y,所以y=22a=22×x4=28x. 7.已知f(x)=2x+3,且f(m)=6,则m等于________.解析:2m+3=6,m=32.答案:328.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则的值等于________.解析:由题意,f(3)=1,∴=f(1)=2.答案:29.将函数y=f(x)的图象向左平移1个单位,再向上平移2个单位得函数y=x2的图象,则函数f(x)的解析式为__________________.解析:将函数y=x2的图象向下平移2个单位,得函数y=x2-2的图象,再将函数y=x2-2的图象向右平移1个单位,得函数y=(x-1)2-2的图象,即函数y=f(x)的图象,故f(x)=x2-2x-1.答案:f(x)=x2-2x-110.已知f(0)=1,f(a-b)=f(a)-b(2a-b+1),求f(x).解:令a=0,则f(-b)=f(0)-b(-b+1)=1+b(b-1)=b2-b+1.再令-b=x,即得f(x)=x2+x+1.11.已知f(x+1x)=x2+1x2+1x,求f(x).解:∵x+1x=1+1x,x2+1x2=1+1x2,且x+1x≠1,∴f(x+1x)=f(1+1x)=1+1x2+1x=(1+1x)2-(1+1x)+1.∴f(x)=x2-x+1(x≠1).12.设二次函数f(x)满足f(2+x)=f(2-x),对于x∈R恒成立,且f(x)=0的两个实根的平方和为10,f(x)的图象过点(0,3),求f(x)的解析式.解:∵f(2+x)=f(2-x),∴f(x)的图象关于直线x=2对称.于是,设f(x)=a(x-2)2+k(a≠0),则由f(0)=3,可得k=3-4a,∴f(x)=a(x-2)2+3-4a=ax2-4ax+3.∵ax2-4ax+3=0的两实根的平方和为10,∴10=x21+x22=(x1+x2)2-2x1x2=16-6a,∴a=1.∴f(x)=x2-4x+3.。
2.2-函数的表示法习题及其答案(共4页)-本页仅作为预览文档封面,使用时请删除本页-函数的表示法一、选择题。
1.下列四种说法正确的一个是( C ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的数集BC .函数是一种特殊的映射D .映射是一种特殊的函数 2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于( B )A .q p +B .q p 23+C .q p 32+D .23q p + 3.下列各组函数中,表示同一函数的是( C )A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==4.已知函数23212---=x x x y 的定义域为( D )A .]1,(-∞B .]2,(-∞C .]1,21()21,(-⋂--∞D . ]1,21()21,(-⋃--∞5.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( A )A .1+πB .0C .πD .1-6.下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是( B )7.设函数x x xf =+-)11(,则)(x f 的表达式为( C ) A .x x -+11 B . 11-+x x C .x x +-11 D .12+x x8.已知二次函数)0()(2>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为( A )A .正数B .负数C .0D .符号与a 有关9.已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式( B )A .x b c a c y --=B .x c b a c y --=C .x a c b c y --=D .x ac cb y --= 10.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为( C )日期:_______A .)2,1[-B .]1,1[-C .)2,2(-D .)2,2[- 二、填空题。
专题3.2 函数的表示知识点一表示函数的三种方法解析法用数学表达式表示两个变量之间的对应关系列表法列出表格来表示两个变量之间的对应关系图象法用图象表示两个变量之间的对应关系知识点二分段函数1.一般地,分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.3.作分段函数图象时,应分别作出每一段的图象.函数的图象的画法(1)若y =f (x )是已学过的函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍. (2)若y =f (x )不是所学过的函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y =f (x )的图象. 【例1】作出下列函数的图象并求出其值域. (1)y x =-,{0x ∈,1,2-,3}; (2)2y x=,[2x ∈,)+∞;(3)22y xx =+,[2x ∈-,2).【变式训练1】作出下列各函数的图象: (1)21y x =+,{1x ∈-,0,1,2,3}; (2)2y x =-,[0x ∈,2].【变式训练2】作出下列函数的图象. (1)2y x =,{2x ∈-,1-,0,1,2}; (2)21y x =-,{|11}x x x ∈-<<; (3)||y x =,x R ∈; (4)2y x=,{|14}x x x ∈<<;(5)|5|2y x =-+,x R ∈.【变式训练3】作出下列函数的图象并求出其值域. (1)21y x =+,[0x ∈,2]; (2)2y x=,[2x ∈,)+∞;.(3)22y xx =+,[2x ∈-,2].求函数的解析式(1)换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式 (2)配凑法:对f (g (x ))的解析式 (3)待定系数法:若已知f (x )的解析式(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解. 【例2】已知()f x 满足下列条件,分别求()f x 的解析式. (1)已知(1)2f x x x =-()f x ;(2)已知()f x 为二次函数,(0)0f =,(1)()1f x f x x +=++,求()f x ; (3)已知()f x 满足1()2()1f x f x x+-=+,求()f x ; 【变式训练1】(1)已知()f x 是一次函数,且()()()()21323,2101f f f f +=--=-,求()f x 的解析式;(2)已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式.【变式训练2】求下列函数解析式: (1)已知22131(1)x f x x x++=+,求函数()f x 的解析式; (2)已知1(1)2(3)f x f x x x++-=+,求函数()f x 的解析式;(3)已知()f x 是二次函数,且2(1)(1)244f x f x xx ++-=-+,求函数()f x 的解析式.【变式训练3】求下列函数()f x 的解析式. (1)已知1()21x f x x-=+,求()f x ;(2)已知221(12)x f x x --=,求()f x ;(3)已知1()2()59f x f x x+=+,求()f x ;(4)已知()f x 为二次函数,且(0)2f =,(1)()1f x f x x +-=-,求()f x .分段函数求值(1)分段函数求值的方法①先确定要求值的自变量属于哪一段区间. ②然后代入该段的自变量的值(2)已知分段函数的函数值求对应的自变量的值,可分段利用函数【例3】设2,10()[(6)],10x x f x f f x x -⎧=⎨+<⎩,则()5f 的值为( ) A .10 B .11C .12D .13【变式训练1】若函数1,(0)()(2),(0)x x f x f x x +⎧=⎨+<⎩,则(3)f -的值为( ) A .5B .1-C .7-D .2【例4】已知函数1(1)()3(1)x x f x x x +⎧=⎨-+>⎩,则5[()]2f f 的值为( ) A .52B .32C .12D .12-【变式训练1】若2,(0)(),(0)x x f x x x ⎧=⎨-<⎩,则[(2)](f f -=) A .2B .3C .4D .5【例5】设函数2,0(),0x x f x x x -⎧=⎨>⎩,若()9f α=,则α= . 【变式训练1】已知函数21(0)2(0)x x y x x ⎧+=⎨>⎩,若f(a )10=,则a 的值是( ) A .3或3-B .3-或5C .3-D .3或3-或5【变式训练2】已知函数21,0()2,0x x f x x x ⎧+=⎨->⎩,若()5f x =,则x 的值是()A .2-B .2或52-C .2或2-D .2或2-或52-【例6】已知211,0()2(1),0x x f x x x ⎧+⎪=⎨⎪-->⎩使()1f x -成立的x 的取值范围是()A .[4-,2)B .[4-,2]C .(0,2]D .(4-,2]【例7】已知函数21,2()2,2221,2x x f x x x x x x +-⎧⎪=+-<<⎨⎪-⎩(1)(5)f -,(3)f -,5(())2f f -的值.(2)若f (a )3=,求实数a 的值. (3)若()f m m >,求实数m 的取值范围.【变式训练1】已知函数21,2()2,2221,2x x f x x x x x x +-⎧⎪=+-<<⎨⎪-⎩.(1)求5(5),(3),2f f f f⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦的值; (2)若()3f a =,求实数a 的值.【变式训练2】已知函数225,0()2,0x x f x x x x -⎧=⎨+<⎩.(1)求(f f (1))的值;(2)若(|1|)3f a -<,求实数a 的取值范围.分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.【例8】已知函数()|24||1|f x x x =+--.(1)画出函数()f x 的图象;(2)若a ,0b >,函数()f x 的最小值为M ,且0a b M ++=,求222a b +的最小值.【例9】给定函数()1f x x =-+,2()(1)g x x =-,x R ∈.(1)画出函数()f x ,()g x 的图象;(2)x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为(){()m x min f x =,()}g x ,请分别用图象法和解析法表示函数()m x .【变式训练1】已知函数()|21|f x x =-,2()3g x x x =--+,x R ∈.(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为(){()m x min f x =,()}g x ,请分别用图象法和解析式法表示函数()m x ; (注:图象法请在图2中表示,本题中的单位长度请自己定义且标明.)(3)写出函数()m x 的单调区间和函数的值域.【变式训练2】已知函数2()43f x x x =-+,()1g x x =-,x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为(){()m x min f x =,()}g x . (1)写出函数()m x 的解析式,并画出它的图象;(2)当[0x ∈,](0)n n >时,若函数()m x 的最大值为1324n -,求实数n的取值集合.分段函数的实际应用(1)当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.(2)分段函数模型应用的关键是确定分段的各分界点,即明确自变量的取值区间,对每一个区间进行分类讨论,从而写出相应的函数【例10】如图所示,等腰梯形ABCD 的两底分别为2AD a =,BC a =,45∠=︒,作直线MN AD⊥交AD于M,交折线ABCD于N.设AM x=,BAD试将梯形ABCD位于直线MN左侧的面积y表示为x的函数.则y=.【变式训练1】如图,OAB∆位∆是边长为2的正三角形,记OAB于直线(0)=>左侧的图形的面积为()f t.x t t(1)求函数()f t解析式;(2)画出函数()=的图象;y f t(3)当函数()()=-有且只有一个零点时,求a的值.g t f t at【变式训练2】《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:全月应纳税所得额税率(%)不超过1500元的部分3超过1500元至4500元的部分10超过4500元至9000元的部分20(1)若某人全月工资、薪金所得为(012500)元,应纳税为yx x元,写出y与x的函数关系式;(2)若某人一月份纳税145元,那么他当月的工资、薪金所得是多少元.【变式训练3】星期天,刘先生到电信局打算上网开户,经询问,记录了可能需要的三种方式所花费的费用资料,现将资料整理如下:①163普通:上网资费2元/小时;②163A:每月50元(可上网50小时),超过50小时的部分资费2元/小时;③ADSLD:每月70元,时长不限(其他因素忽略不计).请你用所学的函数知识对上网方式与费用问题作出研究:(1)分别写出三种上网方式中所用资费与时间的函数解析式;(2)在同一坐标系内分别画出三种方式所需资费与时间的函数图象;(3)根据你的研究,请给刘先生一个合理化的建议.1.设函数11(0)2()1(0)x x f x x x⎧-⎪⎪=⎨⎪<⎪⎩,若f(a )a =,则实数a 的值为()A .1±B .1-C .2-或1-D .1±或2-2.已知实数0a ≠,函数2,1()2,1x a x f x x a x +<⎧=⎨--⎩,若(1)(1)f a f a -=+,则a 的值为( ) A .34-B .34C .35-D .353.已知函数2(0)()3(0)x x f x x x ⎧=⎨+<⎩,若0(())4f f x =,则0x 的值等于()A .5-或1B .1-C 2D 21-二.填空题(共1小题) 4.设函数22(2)()2(2)x x f x x x ⎧+=⎨>⎩,若0()8f x =,则0x =.三.解答题(共8小题)5.作出函数:函数(3)||y x x =--的图象,并写出函数的单调区间.(用格尺作图)6.依法纳税是每个公民应尽的义务,国家征收个人所得税是分段计算,扣除三险一金后月总收入不超过3500元,免征个人所得税,超过3500元的部分需征税.设全月应纳税所得额为x 元,则x =扣除三险一金后全月总收入3500-元,税率见下表: 级数全月应纳税所得额税率1 不超过1500元的部分 3% 2超过1500元至4500元的部分10%3 超过4500元至9000元的部分20%4 超过9000元至35000元的部分25%5 超过35000元至55000元的部分30%6 超过55000元至80000元的部分35%7 超过80000元的部分45%(Ⅰ)若应纳个人所得税为()f x ,试用分段函数表示1~3级个人所得税()f x 的计算公式;(Ⅱ)某人2012年5月扣除三险一金后总收入为5500元,试求该人此月份应缴纳个人所得税多少元?(Ⅲ)某人六月份应缴纳此项税款500元,则他当月扣除三险一金后总收入为多少元? 7.设函数()|1|()f x kx k R =-∈.(Ⅰ)若不等式()2f x 的解集为1|13x x ⎧⎫-⎨⎬⎩⎭,求k 的值; (Ⅱ)若f (1)f +(2)5<,求k 的取值范围.8.已知()f x 是R 上的偶函数,且当0x 时,2()21f x x x =++.(1)求()f x 的解析式; (2)画出函数()f x 的图象. 9.已知函数()f x 是定义在R 上的偶函数,且当0x时,2()2f x x x =+.现已画出函数()f x 在y 轴左侧的图象,如图所示,请根据图象完成下列各小题. (1)补全函数图象.(2)写出函数()()f x x R ∈的解析式.(3)若函数()()22([1g x f x ax x =-+∈,2]),求函数()g x 的最小值.10.已知函数()f x 是定义在R 上的偶函数,当0x 时,2()2f x x x =+.(1)求函数()f x 的解析式; (2)画出函数()f x 的图象;(3)根据图象写出()f x 的单调区间和值域.11.给定函数()1f x x =+,2()(1)g x x =+,x R ∈,(1)在同一直角坐标系中画出函数()f x ,()g x 的图象; (2)x R ∀∈,用()M x 表示()f x ,()g x 中的较大者,记为(){M x max f=()x ,()}g x .12.已知函数2()|2|f x x x =-+.(1)去掉绝对值,写出()f x 的分段解析式; (2)画出()f x 的图象,并写出值域.21。
表示函数的方法,常用的有解析法、图象法和列表法三种.常见的求函数解析式的方法有待定系数法,换元法,配凑法,消去法等等。
例1. 已知f (2x +1)=3x -2,求函数f (x )的解析式。
例2. 已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求函数f (x )的解析式。
例3. 已知2211()f x x x x +=+,求函数f (x )的解析式例4. 已知函数f (x )满足1()2()f x f x x -=,求函数f (x )的解析式。
例5. 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f例6. 已知x x x f 2)1(+=+,求)1(+x f例7.已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f例8.已知定义在R 上的函数满足,求的解析式。
例9.设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f基础达标1.函数f (x )= 2(1)x x x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 42.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).3. 下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是4.已知函数()f x 满足()()()f ab f a f b =+,且(2)f p =,(3)f q =,那么(12)f 等于( ).A. p q +B. 2p q +C. 2p q +D. 2p q +5.函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于 6.已知函数(),m f x x x=+且此函数图象过点(1,5),实数m 的值为 . 7.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 ;若00()8,f x x ==则 . 8.已知)0(1)]([,21)(22≠-=-=x xx x g f x x g ,那么)21(f 等于9.画出下列函数的图象:(1)22||3y x x =-++; (2)2|23|y x x =-++.10.设二次函数()f x 满足(2)(2)f x f x +=-且()f x =0的两实根平方和为10,图象过点(0,3),求()f x 的解析式11、已知二次函数的二次项系数为a ,且不等式的解集为(1,3),方程有两个相等的实根,求的解析式。
函数的表示法与分段函数练习 1. 已知函数()xf 由下表给出,则()3f 等于( C )x 21<≤x2 42≤<x ()x f1 2 3 A.1 B.2 C.3 D.不存在2. 已知()x f 是一次函数,()()51322=-f f ,()()1102=--f f ,则()=x f ( B )A.23+xB.23-xC.32+xD.32-x3. 设函数()⎪⎩⎪⎨⎧>≤+=1,21,12x xx x x f ,则()()=3f f ( D )A.51B.3C.32D.913 4. 已知函数()12-=x x f ,则()1+x f 等于( C )A.12-xB.1+xC.12+xD.15. 小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是( C )6. 一个等腰三角形周长为20,底边长y 关于腰长x 的函数解析式为( D )A.x y -=10(100≤<x )B.x y -=10(100<<x )C.x y 220-=(105≤≤x )D.x y 220-=(105<<x )7. 设函数()⎩⎨⎧>≤-=0,0,2x x x x x f ,若()4=a f ,则实数=a ( B ) A.-4或-2 B.-4或2 C.-2或4 D.-2或28. 已知函数()()⎩⎨⎧<+≥-=6,26,5x x f x x x f ,则()3f 等于( A ) A.2 B.3 C.4 D.59. 已知函数()x f 的图象是两条线段(如图所示,不含端点),则⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛31f f =( B )A.-31B.31C.-32D.32 10. 当x ∈[-1,1)时,()⎩⎨⎧≤≤<≤-+-=10,01,242x x x x x f ,则=⎪⎭⎫ ⎝⎛-21f ___1___. 11. 若函数()21x x f =-,则()=x f __122++x x ______. 12. 已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,则汽车离开A 地的距离x (千米)关于时间t (小时)的函数表达式是_()⎪⎩⎪⎨⎧≤<--≤<≤≤=5.65.3,5.3501505.35.2,1505.20,60x t t t t x ______.13. 已知实数0≠a ,函数()⎩⎨⎧≥--<+=1,21,2x a x x a x x f ,若()()a f a f +=-11,则a 的值为__43-____. 解答:∵a ≠0,f(1-a)=f(1+a)当a >0时,1-a <1<1+a ,则f(1-a)=2(1-a)+a=2-a ,f(1+a)=-(1+a)-2a=-1-3a ∴2-a=-1-3a ,即a=23-(舍) 当a <0时,1+a <1<1-a ,则f(1-a)=-(1-a)-2a=-1-a ,f(1+a)=2(1+a)+a=2+3a ∴-1-a=2+3a 即a=43-,综上可得a=43-. 14. 已知()x f 是二次函数且()00=f ,()()11++=+x x f x f ,求()x f .(()x x x f 21212+=) 15. 已知函数21++-=x x y .(1)作出函数的图象;(2)写出函数的定义域和值域.。
人教版八年级下册第2课时函数的表示方法(179) 1.一辆汽车由A地驶向相距240千米的B地,它的平均速度为30千米/时,求汽车距B地的路程s(千米)与行驶时间t(时)之间的函数解析式,并画出这个函数图象.2.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.设某户每月用水量为x吨,应缴水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨时,y与x之间的函数解析式;(2)若该城市某户4月份的水费平均每吨2.8元,求该户4月份用水多少吨.3.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是x的函数B.弹簧不挂重物时的长度为0厘米C.在弹簧的弹性范围内,所挂物体的质量为7千克时,弹簧的长度为13.5厘米D.在弹簧的弹性范围内,所挂物体的质量每增加1千克,弹簧的长度就增加0.5厘米4.长方形的周长为24cm,其中一边长为xcm(其中x>0),面积为ycm2,则y与x之间的关系式可以写为()A.y=x2B.y=(12−x)2C.y=2(12−x)D.y=(12−x)x5.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速公路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)之间的函数关系的大致图象是()A. B.C. D.6.如图,△ABC的边BC长是8,BC边上的高AD′是4,点D在BC边上运动,设BD的长为x,请写出△ACD的面积y与x之间的函数关系式:.(不必写自变量的取值范围)7.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中2≤x≤20):(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生对概念的接受能力最强;(4)从表中可知,当时间x在什么范围内时,学生的接受能力逐步增强?当时间x在什么范围内时,学生的接受能力逐步降低?8.下表是一项试验的统计数据,表示皮球下落时的开始高度d与弹跳高度b的关系.则弹跳高度b与开始高度d的函数解析式是()A.b=d2B.b=2dC.b=dD.b=d+2529.声音在空气中传播的速度(简称“声速”)和气温有下表中的关系:(1)上表反映了之间的关系,其中是自变量,是的函数;(2)若用T(℃)表示气温,v(m/s)表示声速,则随着T的增大,v将发生怎样的变化?(3)根据表中数据的变化,你发现了什么规律?写出v与T之间的函数解析式(不需要写自变量的取值范围);(4)根据你发现的规律,回答下列问题:在30℃发生闪电的夏夜,小明在看到闪电6s后听到雷声,那么发生打雷的地方距小明大约有多远?10.八(1)班同学在探究弹簧的长度与砝码质量的关系时,通过试验得到的相应数据如下表所示:则y关于x的函数图象是图中的()A. B.C. D.11.甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地千米.12.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关闭进水管.在打开进水管到关闭进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分)之间的函数关系如图所示,关闭进水管后,经过分钟,容器中的水恰好放完.参考答案2(1)【答案】当0≤x≤20时,y=2.5x;当x>20时,y=3.3(x−20)+2.5×20=3.3x−16【解析】:由题意可知,此函数为分段函数,需分别在不同的自变量范围内写出相应函数解析式.(2)【答案】∵该户4月份的水费平均每吨2.8元,∴该户4月份用水超过20吨.设该户4月份用水a吨,根据题意,得2.8a=3.3a−16,解得a=32.答:该户4月份用水32吨.【解析】:根据(1)中的函数解析式可以求出4月份的用水吨数.3.【答案】:B【解析】:由表可知,物体质量为0时,弹簧长度为10厘米,故B错误.5.【答案】:C【解析】:由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快6.【答案】:y=−2x+16【解析】:由题意可得,△ACD的面积y与x之间的函数关系式为:y=12AD′·DC=12×4×(8−x)=−2x+16.7(1)【答案】提出概念所用时间x和对概念的接受能力y两个变量【解析】:考查变量的概念.(2)【答案】当x=10时,y=59,所以提出概念所用时间是10分钟时,学生的接受能力是59.【解析】:考查函数值的意义.(3)【答案】当x=13时,y的值最大是59.9,所以提出概念13分钟时,学生对概念的接受能力最强.【解析】:从表中可知,当x=13时,y的值最大是59.9.(4)【答案】由表中数据可知:当2≤x≤13时,y值逐渐增大,学生的接受能力逐步增强;当13<x≤20时,y值逐渐减小,学生的接受能力逐步降低.8.【答案】:C【解析】:从图表中可以看出,d是b的两倍的关系.9(1)【答案】声速与气温;气温;声速;气温【解析】:考查自变量与函数的概念.(2)【答案】随着T的增大,v也增大【解析】:从图表上可知,随着T的增大,v也增大.(3)【答案】气温每升高5℃,声速增加3m/sm/s.即气温每升高1℃,声速增加35T∴v=331+35【解析】:从图表中得出相关信息.×30=331+18=349(m/s),349×6=2094(m).(4)【答案】当T=30℃时,v=331+35答:发生打雷的地方距小明大约有2094m.【解析】:由(3)可得,当T=30℃时,代人解析式中可得v=349(m/s),则通过时间和声速求出距离.10.【答案】:D【解析】:从表中可知,弹簧原有长度为2cm,开始时砝码质量每增加50克弹簧长度增加1厘米,当砝码质量为275克时,弹簧长度7.5cm,后面弹簧长度不变,故D正确.11.【答案】:100【解析】:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60(千米/时),又∵300÷3=100(千米/时),∴乙车的速度=100−60=40(千米/时).由图象可知当x=5时,甲车到达B地,此时乙车行驶的路程为5×40=200(千米),∴乙车距离A地100千米。
[基础巩固]1.由下表给出函数y =f (x ),则f (f (1))等于( )A .1 C .4D .5解析 由题意得f (1)=4,所以f (f (1))=f (4)=2. 答案 B2.已知f (x -1)=1x +1,则f (x )的解析式为( )A .f (x )=11+xB .f (x )=1+xxC .f (x )=1x +2D .f (x )=1+x解析 令x -1=t ,则x =t +1, 所以f (t )=1t +1+1=12+t ,所以f (x )=1x +2.答案 C3.已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <1且x ≠-1,x -1,x ≥1,则f (2)=________.解析 f (2)=2-1=1. 答案 14.已知函数f (x +1)=x ,则函数f (x )的解析式是____________ . 解析 解法一 令x +1=t ,则x =(t -1)2(t ≥1), 代入f (x +1)=x ,得f (t )=(t -1)2. 所以f (x )=(x -1)2(x ≥1).解法二 f (x +1)=(x )2=[(x +1)-1]2, 令x +1=t ,则t ≥1, 所以f (t )=(t -1)2, 即f (x )=(x -1)2(x ≥1). 答案 f (x )=(x -1)2(x ≥1)5.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题:(1)比较f (0),f (1),f (3)的大小; (2)求函数f (x )的值域.解析 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y…-5343-5…描点,连线,得函数图象如图:(1)根据图象,容易发现f (0)=3,f (1)=4, f (3)=0,所以f (3)<f (0)<f (1).(2)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].[能力提升]6.函数y =x +|x |x的图象是( )解析 y =x +|x |x =⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0.答案 D7.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)解析 由题意得y +2x =20,所以y =20-2x , 又2x >y ,即2x >20-2x ,即x >5,由y >0,即20-2x >0得x <10,所以5<x <10. 答案 D8.已知函数f (x )的图象如图,则f (x )的解析式为____________ .解析 因为f (x )的图象由两条线段组成,由一次函数解析式求法可得f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1. 答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1.9.某航空公司规定,乘客所携带行李的重量x (kg)与其运费y (元)由如图的一次函数图象确定,那么乘客可免费携带行李的最大重量为____________ kg.解析 设一次函数解析式为y =ax +b (a ≠0),代入点(30,330)与点(40,630)得⎩⎪⎨⎪⎧330=30a +b ,630=40a +b , 解得⎩⎪⎨⎪⎧a =30,b =-570.即y =30x -570,若要免费,则y ≤0,所以x ≤19. 答案 1910.2021年5月1日,王兵买了一辆1.6 L 手动挡的家庭汽车,该种汽车燃料消耗量标识是市区工况:10.40 L/100 km ;市郊工况:6.60 L/100 km ;综合工况:8.00 L/100 km.王兵估计:他的汽车一年的行驶里程约为10 000 km ,汽油价格按平均价格7.50元/L 计算,当年行驶里程为x km 时燃油费为y 元.(1)判断y 是否是关于x 的函数,如果是,求出函数的定义域和解析式; (2)王兵一年的燃油费估计是多少? 解析 (1)y 是关于x 的函数. 函数的定义域是[0,10 000],函数解析式为y=8×x100×7.50=0.60x.(2)当x=10 000时,y=0.60×10 000=6000,所以王兵一年的燃油费估计是6000元.[探索创新]11.设f(x)是R上的函数,且满足f(0)=1,并且对任意的实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式.解析因为对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),所以令y=x,有f(0)=f(x)-x(2x-x+1),即f(0)=f(x)-x(x+1),又f(0)=1,所以f(x)=x(x+1)+1=x2+x+1,即f(x)=x2+x+1.。
函数的三种表示方法对应典型练习题(图像法、列表法、解析法)祖π数学之高分速成新人教八年级下册基础知识3 函数的表示1.函数的表示方法可以用解析式法、列表法和图像法。
解析式法是用公式表示函数,列表法是将函数的定义域和值域列成表格,图像法是用函数的图像来表示函数。
2.描点法画函数图形的一般步骤是先确定定义域和值域,然后选择若干个自变量值,计算出相应的函数值,最后在平面直角坐标系中标出这些点,连接起来就是函数的图形。
题型1】图像法表示函数1.2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进。
官兵们坐车以某一速度匀速前进,但中途被阻停下。
为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往。
根据函数的图像,可以判断出官兵们行进的距离S与行进时间t之间的关系。
2.故事中的乌鸦喝水问题可以用函数的图像来表示。
设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,可以画出函数的图像来表示乌鸦喝水的情景。
3.在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止。
设点E运动的路程为x,△BCE的面积为y。
根据函数的图像,可以求出当x=7时,点E应运动到哪个位置。
4.在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B-C-D作匀速运动。
根据函数的图像,可以求出△ABP的面积S与点P运动的路程x之间的函数图像。
5.XXX骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,加快了骑车速度。
根据XXX到学校剩下的路程s关于时间t的函数图像,可以判断出符合XXX行驶情况的图像。
6.XXX每天坚持体育锻炼,星期天从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家。
根据XXX离家的距离y(米)与时间t(分钟)之间关系的函数图像,可以判断出当天XXX的运动情况。
7.小以400米/分叶的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地。
初二数学函数的表示法试题1. 在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( )B .v=m 2﹣1C .v=3m ﹣3D .v=m+1 【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式. 解:当m=4时, A 、v=2m ﹣2=6; B 、v=m 2﹣1=15; C 、v=3m ﹣3=9; D 、v=m+1=5. 故选B .2. 弹簧挂上物体后伸长,已知一弹簧的长度(cm )与所挂物体的质量(kg )之间的关系如下表:下列说法错误的是( )B .弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C .如果物体的质量为mkg ,那么弹簧的长度ycm 可以表示为y=2.5m+10 D .在弹簧能承受的范围内,当物体的质量为4kg 时,弹簧的长度为20cm 【答案】B【解析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m ,质量为mkg ,y 弹簧长度;弹簧的长度有一定范围,不能超过.解:A .在没挂物体时,弹簧的长度为10cm ,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B 、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C 、当物体的质量为mkg 时,弹簧的长度是y=12+2.5m ,故此选项正确,不符合题意;D 、由C 中y=10+2.5m ,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意; 故选:B .3. 下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( )A.b=d2 B.b=2d C.b= D.b=d+25【答案】C【解析】这是一个用图表表示的函数,可以看出d是b的2倍,即可得关系式.解:由统计数据可知:d是b的2倍,所以,b=.故本题选C.4.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为方.月用水量不超过12方部超过12方不超过18吨部分超过18方部【答案】20【解析】根据题意可知:先判断出该用户用的水与18方的关系,再设用水x方,水费为y元,继而求得关系式为y=39+3(x﹣18);将y=45时,代入上式即可求得所用水的方数.解:∵45>12×2+6×2.5=39,∴用户5月份交水费45元可知5月用水超过了18方,设用水x方,水费为y元,则关系式为y=39+3(x﹣18).当y=45时,x=20,即用水20方.5.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是.【答案】【解析】分析可得:各个式子分子是输入的数字,分母是其3倍减1,故当输入数据是正整数n 时,即可求得输出的值.解:∵各个式子分子是输入的数字,分母是其3倍减1,∴当输入数据是正整数n时,输出的数据是.6.函数的三种表示方式分别是.【答案】解析法、表格法、图象法【解析】根据函数的表示方法进行填写.解:函数的三种表示方法分别为:解析法、表格法、图象法.7. 函数的表示方法有 .【答案】列表法,图象法,解析式法.【解析】根据常用的函数表示方法:列表法,解析式法,图象法进行填写. 解:函数的表示方法通常有三种: 列表法,解析式法,图象法.故答案为:列表法,图象法,解析式法.8. 观察下表:则y 与x 的关系式为 .【答案】y=x 3+1【解析】由上表找出相应的常量即可求出关系式. 解:当x=1时,y=13+1=2; 当x=2时,y=22+1=9; 当x=3时,y=33+1=28; …由此可得出y=x 3+1.9. 声音在空气中传播的速度y (米/秒)(简称音速)与气温x (℃)之间的关系如下从表中可知音速y 随温度x 的升高而 .在气温为20℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点 68.6 米.【答案】加快【解析】根据表中数据可列出音速与时间的关系式,进而求出答案. 解:观察表中的数据可知,音速随温度的升高而加快;当气温为20℃时,音速为343米/秒,而该人是看到发令枪的烟0.2秒后,听到了枪声. 则由此可知,这个人距发令地点343×0.2=68.6米.10. 据国家统计局统计,新中国成立以来至2000年,我国各项税收收入合计见表.从表中可以得出:新中国成立以来我国的税收收人总体趋势是 ,其中, 年与增长百分数最大; 年与5年前相比,增长百分数最小;2000年与1950年相比,税收收入增长了 倍(保留一位小数).【答案】上升;1985;1965;255.9【解析】由表中的数据,分别算出与5年前相比,增长百分数,进一步比较得出答案即可.解:(127.45﹣48.98)÷48.98≈160.2%;(203.65﹣127.45)÷127.45≈59.8%;(204.30﹣203.65)÷203.65≈0.3%;(281.20﹣204.30)÷204.30≈37.6%;(402.77﹣281.20)÷281.20≈43.2%;(571.70﹣402.77)÷402.77≈41.9%;(2040.79﹣571.70)÷571.70≈257.0%;(2821.86﹣2040.79)÷2040.79≈38.3%;(6038.04﹣2821.86)÷2821.86≈114.0%;(12581.51﹣6038.04)÷6038.04≈108.4%;(12581.51﹣48.98)÷48.98≈255.9(倍);新中国成立以来我国的税收收人总体趋势是上升,其中,1985年与5年前相比,增长百分数最大;1965年与5年前相比,增长百分数最小;2000年与1950年相比,税收收入增长了25587.0倍.故答案为:上升;1985;1965;255.9.。
人教版数学高中必修一3.1.2函数的表示法1.下表表示函数y =f (x ),则f (11)=( )2.函数f (x ),g (x )由下列表格给出,则f [g (3)]等于( )A.4 B .3C .2 3.若函数f (x )满足f (2x -1)=x +1,则f (3)的值为( ) A .1 B .2C .3 D .44.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0时,f (x )=( ) A.1x B.1x -1 C.11-xD.1x -15.若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f ⎝ ⎛⎭⎪⎫12的值为( )A .1B .15C .4D .306.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B =( ) A .[1,+∞) B .(1,+∞) C .[2,+∞) D .(0,+∞)7.若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是( )A .a =-1或a =3B .a 不存在C .a =3D .a =-18.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )等于( )A .2x +1B .2x -1C .2x -3D .2x +79. 已知f (x )是一次函数,若f [f (x )]=4x +8,则f (x )的解析式为( ) A .f (x )=2x +83B .f (x )=-2x -8C .f (x )=2x +83或f (x )=-2x -8D .不存在10.已知函数F (x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x的反比例函数,且F ⎝ ⎛⎭⎪⎫13=16,F (1)=8,则F (x )的解析式为( )A .F (x )=3x +5xB .F (x )=5x +5x C .F (x )=3x +3D .不存在 答案解析 1.C解析:由表可知f (11)=4.故选C 2.A解析:由g (3)=2,所以f [g (3)]=f (2)=4,故选A 3.C解析:令2x -1=3,得x =2,故f (3)=2+1=3.故选C 4.B解析:令1x =t ,则x =1t ,代入f ⎝ ⎛⎭⎪⎫1x =x 1-x,则有f (t )=1t1-1t=1t -1,故选B. 5.B解析:令1-2x =12,则x =14,∴f ⎝ ⎛⎭⎪⎫12=1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15.故选B6.C解析:集合A 表示函数的定义域,集合B 表示函数的值域,A ={x |x ≥1},B ={y |y ≥2}.∴A ∩B =[2,+∞).故选C 7.D解析:因为二次函数的值域不是R ,因此可知f (x )不是二次函数,应为一次函数 ∴a 2-2a -3=0且a -3≠0,∴a =-1.故选D 8.B解析:由已知得:g (x +2)=2x +3,令t =x +2,则x =t -2,代入g (x +2)=2x +3,则有g (t )=2(t -2)+3=2t -1,故选B. 9.C解析:设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a 2x +ab +b .∴⎩⎪⎨⎪⎧a 2=4,ab +b =8,,解得⎩⎨⎧a =2b =83或⎩⎪⎨⎪⎧a =-2b =-8. 所以f (x )=2x +83或f (x )=-2x -8故选C 10.A解析:设f (x )=kx (k ≠0),g (x )=m x (m ≠0),则F (x )=kx +mx .由F ⎝ ⎛⎭⎪⎫13=16,F (1)=8,得⎩⎨⎧13k +3m =16,k +m =8,解得⎩⎪⎨⎪⎧k =3,m =5,所以F (x )=3x +5x .故选A.。
函数的表示法练习题
满分100,时间60分钟 一.选择题(35分) 1、下列表格中的x 与y 能构成函数的是(
) A .
B .
C .
D .
()2,2,x R f x y x y x ∈=-=是这两个2、若函数中的较小者,则()f x 的最大值为( )
A .2
B .1
C .-1
D .无最大值 3、设21,1x f x f x x ⎛⎫⎛⎫== ⎪ ⎪+⎝⎭⎝⎭
则( ) A .()f x B .()f x - C .()1f x D .()
1f x - 4、已知集合{}*A N ,B=21,m m n n Z ==-∈,映射:f A B →使A 中任一元素a 与B 中元素21a -对应,则与B 中元素17对应的A 中元素是(
) A .3 B .5 C .17 D .9
5、若()()()2
2112,0x g x x f g x x x -=-=≠⎡⎤⎣⎦,则12f ⎛⎫= ⎪⎝⎭( )
A .1
B .3
C .15
D .30
6、若()29x f x x
-=,则方程()9f x x =的根是( ) A .12 B .12
- C .1 D .1- 7、已知()f x 是二次函数,且()()()01,122f f x f x x =-+=-+,则()f x 的表达式为( )
A .()231f x x x =-+-
B .()2312f x x x =---
C .()213222f x x x =
-+ D .()21222
f x x x =-+ 二、填空题(20分)
8、一水池有2个进水口,1个出水口,进出水速度分别如图甲、乙所示,某天0点到6
给出以下3个论断:①0点到3点至进水不出水②3点到4点不进水只出水③4点到6点不进水不出水,则一定能确定正确的论断序号是__________________。
9、设函数()()()22,02,2x x f x x x ⎧+≤⎪=⎨>⎪⎩
,且()08f x =,则0x =___________。
10、已知函数()2
21x f x x =+,那么
()()1122f f f ⎛⎫++ ⎪⎝⎭()133f f ⎛⎫+++ ⎪⎝⎭()144f f ⎛⎫+= ⎪⎝⎭
______。
11、函数()[]242,4,4f x x x x =-+∈-的最小值是_________,最大值是___________。
三、解答题(45分)
12、在国内投寄外埠平信,每封信不超过20g 付邮资80分,超过20g 不超过40g 付邮资160分,超过40g 不超过60g 付邮资240分,以此类推,每封()0100xg x <≤的信应付多少邮资(单位:分)?写出函数表达式,做出函数的图像,并求出函数的值域。
13、画出下列函数的图像:
(1)22,2y x x Z x =+∈≤且;
丙
(2)(]223,0,2y x x x =-+∈;
(3)2y x x =--;
(4)3,23,223,2x y x x x <-⎧⎪=--≤<⎨⎪-≥⎩
14、已知函数(
)f x =()f x 的定义域。
15、已知函数(
)4f x x =
(1)求()4f -;
(2)求函数()f x 的定义域。
(3)求函数()f x 的值域。