2.1 函数和它的表示法 第2课时
- 格式:ppt
- 大小:3.71 MB
- 文档页数:25
第2课时 分段函数导入新课思路1.当x>1时,f(x)=x+1;当x≤1时,f(x)=-x,请写出函数f(x)的解析式.这个函数的解析式有什么特点?教师指出本节课题.思路2.化简函数y=|x|的解析式,说说此函数解析式的特点,教师指出本节课题. 推进新课 新知探究 提出问题 ①函数h(x)=⎩⎨⎧≥<+-1x -1,x 1,x,-x 与f(x)=x-1,g(x)=x 2在解析式上有什么区别?②请举出几个分段函数的例子.活动:学生讨论交流函数解析式的区别.所谓“分段函数”,习惯上指在定义域的不同部分,有不同对应法则的函数.并让学生结合体会来实际举例. 讨论结果:①函数h(x)是分段函数,在定义域的不同部分,其解析式不同.说明:分段函数是一个函数,不要把它误认为是几个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集;生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等. ②例如:y=0,1,0,0<>x x 等.应用示例思路11.画出函数y=|x|的图象.活动:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式. 解法一:由绝对值的概念,我们有y=⎩⎨⎧<≥0.x x,-0,x x,所以,函数y=|x|的图象如图1-2-2-10所示.图1-2-2-10解法二:画函数y=x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y=x 的图象位于x 轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示. 变式训练1.已知函数y=⎪⎩⎪⎨⎧>+-≤<-≤+.4,2,40,2,0,42x x x x x x x(1)求f{f [f(5)]}的值; (2)画出函数的图象.分析:本题主要考查分段函数及其图象.f(x)是分段函数,要求f{f [f(5)]},需要确定f [f(5)]的取值范围,为此又需确定f(5)的取值范围,然后根据所在定义域代入相应的解析式,逐步求解.画出函数在各段上的图象,再合起来就是分段函数的图象.解:(1)∵5>4,∴f(5)=-5+2=-3.∵-3<0,∴f [f(5)]=f(-3)=-3+4=1. ∵0<1<4,∴f{f [f(5)]}=f(1)=12-2×1=-1,即f{f [f(5)]}=-1. (2)图象如图1-2-2-11所示:图1-2-2-112.课本P 23练习3.3.画函数y=(x+1)2,-x,x≤0,x>0的图象.步骤:①画整个二次函数y=x 2的图象,再取其在区间(-∞,0]上的图象,其他部分删去不要;②画一次函数y=-x 的图象,再取其在区间(0,+∞)上的图象,其他部分删去不要;③这两部分合起来就是所要画的分段函数的图象.如图1-2-2-12所示.图1-2-2-12函数y=f(x)的图象位于x 轴上方的部分和y=|f(x)|的图象相同,函数y=f(x)的图象位于x 轴下方的部分对称到上方就是函数y=|f(x)|的图象的一部分.利用函数y=f(x)的图象和函数y=|f(x)|的图象的这种关系,由函数y=f(x)的图象画出函数y=|f(x)|的图象. 2.某市“招手即停”公共汽车的票价按下列规则制定: (1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 活动:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.解:设里程为x 千米时,票价为y 元,根据题意得x ∈(0,20]. 由空调汽车票价制定的规定,可得到以下函数解析式:图1-2-2-13y=⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<.2015,5,1510,4,105,3,50,2x x x x根据这个函数解析式,可画出函数图象,如图1-2-2-13所示.点评:本题主要考查分段函数的实际应用,以及应用函数解决问题的能力.生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等.在列出其解析式时,要充分考虑实际问题的规定,根据规定来求得解析式.注意:①本例具有实际背景,所以解题时应考虑其实际意义;②分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.变式训练2007上海中学高三测试,理7某客运公司确定客票价格的方法是:如果行程不超过100千米,票价是每千米0.5元,如果超过100千米,超过部分按每千米0.4元定价,则客运票价y(元)与行程千米数x(千米)之间的函数关系式是________. 分析:根据行程是否大于100千米来求出解析式.答案:y=⎩⎨⎧>+≤≤.100,4.010,1000,5.0x x x x思路21.已知函数f(x)=⎪⎩⎪⎨⎧<--=>+-.0,1,0,1,0,22x x x x x x (1)求f(-1),f [f(-1)],f{f [f(-1)]}的值;(2)画出函数的图象.活动:此函数是分段函数,应注意在不同的自变量取值范围内有不同的对应关系. 解:(1)f(-1)=0;f[f(-1)]=f(0)=1;f{f[f(-1)]}=f(1)=-12+2×1=1. (2)函数图象如图1-2-2-14所示:图1-2-2-14变式训练2007福建厦门调研,文10若定义运算a ⊙b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=x ⊙(2-x)的值域是________.分析:由题意得f(x)=⎩⎨⎧>-≤.1,2,1,x x x x 画函数f(x)的图象得值域是(-∞,1].答案:(-∞,1]点评:本题主要考查分段函数的解析式和图象.求分段函数的函数值时,要注意自变量在其定义域的哪一段上,依次代入分段函数的解析式.画分段函数y=⎪⎩⎪⎨⎧∈∈.,,),(,),(2211 D x x f D x x f (D 1,D 2,…,两两交集是空集)的图象步骤是(1)画整个函数y=f 1(x)的图象,再取其在区间D 1上的图象,其他部分删去不要; (2)画整个函数y=f 2(x)的图象,再取其在区间D 2上的图象,其他部分删去不要; (3)依次画下去;(4)将各个部分合起来就是所要画的分段函数的图象.2.如图1-2-2-15所示,在梯形ABCD 中,AB=10,CD=6,AD=BC=4,动点P 从B 点开始沿着折线BC 、CD 、DA 前进至A,若P 点运动的路程为x,△PAB 的面积为y.图1-2-2-15(1)写出y=f(x)的解析式,指出函数的定义域; (2)画出函数的图象并求出函数的值域.活动:学生之间相互讨论交流,教师帮助学生审题读懂题意.首先通过画草图可以发现,P 点运动到不同的位置,y 的求法是不同的(如图1-2-2-16的阴影部分所示).图1-2-2-16可以看出上述三个阴影三角形的底是相同的,它们的面积由其高来定,所以只要由运动里程x 来求出各段的高即可.三角形的面积公式为底乘高除以2,则△PAB 的面积的计算方式由点P所在的位置来确定. 解:(1)分类讨论:①当P 在BC 上运动时,易知∠B=60°,则知 y=21×10×(xsin60°)=235x,0≤x≤4.②当P 点在CD 上运动时, y=21×10×23=103,4<x≤10. ③当P 在DA 上运动时, y=21×10×(14-x)sin60°=235-x+353,10<x≤14.综上所得,函数的解析式为y=⎪⎪⎩⎪⎪⎨⎧≤<+-≤<≤≤.1410,335235,104,310,40,235x x x x x (2)f(x)的图象如图1-2-2-17所示:图1-2-2-17由图象,可知y 的取值范围是0≤y≤103, 即函数f(x)的值域为[0,103]. 知能训练1.函数f(x)=|x-1|的图象是()图1-2-2-18分析:方法一:函数的解析式化为y=⎩⎨⎧<-≥-.1,1,1,1x x x x 画出此分段函数的图象,故选B.方法二:将函数f(x)=x-1位于x 轴下方部分沿x 轴翻折到x 轴上方,与f(x)=x-1位于x 轴上方部分合起来,即可得到函数f(x)=|x-1|的图象,故选B.方法三:由f(-1)=2,知图象过点(-1,2),排除A 、C 、D,故选B. 答案:B2.已知函数f(x)=⎪⎪⎩⎪⎪⎨⎧<-=>.0,1,0,1,0,2x xx x x(1)画出函数的图象;(2)求f(1),f(-1),f [f(-1)]的值.解析:分别作出f(x)在x>0,x=0,x<0段上的图象,合在一起得函数的图象. (1)如图1-2-2-19所示,画法略.图1-2-2-19(2)f(1)=12=1,f(-1)=11--=1,f [f(-1)]=f(1)=1. 3.某人驱车以52千米/时的速度从A 地驶往260千米远处的B 地,到达B 地并停留1.5小时后,再以65千米/时的速度返回A 地.试将此人驱车走过的路程s(千米)表示为时间t 的函数. 分析:本题中的函数是分段函数,要由时间t 属于哪个时间段,得到相应的解析式. 解:从A 地到B 地,路上的时间为52260=5(小时);从B 地回到A 地,路上的时间为65260=4(小时).所以走过的路程s(千米)与时间t 的函数关系式为s=⎪⎩⎪⎨⎧≤<-+≤≤<≤.5.105.6),5.6(65260,5.65,260,50,52t t t t t 拓展提升问题:已知函数y=1,f(n+1)=f(n)+2,n=1,n ∈N *. (1)求:f(2),f(3),f(4),f(5); (2)猜想f(n),n ∈N *.探究:(1)由题意得f(1)=1,则有 f(2)=f(1)+2=1+2=3, f(3)=f(2)+2=3+2=5, f(4)=f(3)+2=5+2=7, f(5)=f(4)+2=7+2=9. (2)由(1)得 f(1)=1=2×1-1, f(2)=3=2×2-1,f(3)=5=2×3-1,f(4)=7=2×4-1,f(5)=9=2×5-1.因此猜想f(n)=2n-1,n∈N*.课堂小结本节课学习了:画分段函数的图象;求分段函数的解析式以及分段函数的实际应用.作业课本P25习题1.2 B组3、4.设计感想本节教学设计容量较大,特别是例题条件有图,建议使用信息技术来完成.本节重点设计了分段函数,这是课标明确要求也是高考的重点,通过分段函数问题能够区分学生的思维层次,因此教学中应予以重视.(设计者:刘菲)。
第2课时函数关系的表示法——列表法、解析法【知识与技能】了解函数的表示方法:列表法、解析法,领会它们的联系和区别,进一步理解掌握确定函数关系式,会确定自变量取值范围.【过程与方法】学会用不同方法表示函数,会应用综合的思维、思想分析问题.【情感与态度】培养变化与对应的思想方法,体会函数模型的建构在实际生活中的应用价值.【教学重点】重点是进一步掌握确定函数关系的方法以及确定自变量的取值范围.【教学难点】难点是确定函数关系.一、提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变化,同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.活动一在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).让学生思考后回答(或小组讨论)【教学说明】学生通过思考问题,为掌握新知识函数的表示方法:列表法做铺垫.活动二用10 cm长的绳子围成矩形,设矩形的长度为x cm,面积为Scm2.怎样用含有x的式子表示S?【教学说明】引导学生通过合理、正确的思维方法探索出变化规律.二、导入新课上述活动一、活动二反应了两个变量间的函数关系,函数关系式的表示方法主要有三种方法:列表法、解析法、图象法.在用表达式表示函数时,要考虑自变量的取值必须使函数的表达式有意义.例1求下列函数中自变量x的取值范围;(1)y=2x+4; (2)y=-2x2; (3)1; 3.2y y xx==--【分析】在(1)(2)中,x取任何实数时,2x+4与-2x2都有意义;在(3)中,当x=2时,12x-没有意义;在(4)中,当x<3时,x-3没有意义.【解】(1)x为全体实数.(2)x为全体实数.(3)x≠2.(4)x≥3.注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义.如函数S=πR2中自变量R可取全体实数,如果指明这个式子是表示圆面积S与圆半径R 的关系,那么自变量R的取值范围是R>0.例2当x=3时,求下列函数的函数值:(1)y=2x+4; (2)y=-2x2; (3)1; 3.2y y xx==--【解】(1)当x=3时,y=2x+4=2×3+4=10. (2)当x=3时,y=-2x2=-2×32=-18.(3)当x=3时,y=12x-=1.(4)当x=3时,y=3x-=0.例3一个游泳池内有水300 m3,现打开排水管以每时25 m3排出量排水.(1)写出游泳池内剩余水量Q (m3)与排水时间t(h)间的函数关系式;(2)写出自变量t的取值范围;(3)开始排水后的第5 h末,游泳池中还有多少水?(4)当游泳池中还剩150 m3水时,已经排水多少时间?【解】(1)排水后的剩水量Q 是排水时间t的函数,有Q=-25t+300(2)由于池中共有300 m3水,每时排25 m3,全部排完只需300÷25=12(h),故自变量t的取值范围是0≤t≤12.(3)当t=5,代入上式得Q=-5×25+300=175(m3),即第5h末池中还有水175 m3.(4)当Q=150时,由150=-25t+300,得t=6,即已经排水6 h.三、运用新知,深化理解1.(广西来宾中考)函数y=3x-中,自变量x的取值范围是()A.x≠3B.x≥3C.x>3D.x≤32.(四川遂宁中考)在函数y=11x-中,自变量x的取值范围是()A.x>1B.x<1C.x≠1D.x=13.函数y=21xx+-中,自变量x的取值范围是.4.如图,根据流程图中的程序,当输出数值y=5时,输入数值x是()5.水箱内原有水200升,7点30分打开水龙头,以2升/分的速度放水,设经t分钟时,水箱内存水y升.(1)求y关于t的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)几点几分水箱内的水恰好放完?【参考答案】1.B 2.C 3.x≥-2且x≠1 4.C5.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t,∵y≥0,∴200-2t≥0,解得:t≤100,∴0≤t≤100,所以y关于t的函数关系式为:y=200-2t(0≤t≤100);(2)∵7:55-7:30=25(分钟),∴当t=25时,y=200-2t=200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y=0时,200-2t=0,解得:t=100分钟=1小时40分钟,7:30+1小时40分钟=9点10分,答:故9点10分水箱内的水恰好放完.四、师生互动,课堂小结学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力.1.课本第26页练习1、2、3、5.2.完成练习册中相应的作业.通过本节课学习让学生了解函数的表示方法:列表法、解析法,并领会它们的联系和区别,进一步理解掌握确定函数关系式,会确定自变量取值范围.学会用不同方法表示函数,会应用综合的思维、思想分析问题,培养变化与对应的思想方法,体会函数模型的构建在实际生活中的应用价值.。
§2.1数列的概念与简单表示法(二)学习目标 1.理解数列的几种表示方法,能从函数的观点研究数列;2.理解递推公式的含义,能根据递推公式求出数列的前几项(重、难点).预习教材P30-31完成下列问题:知识点一数列的函数性质1.数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2.在数列{a n}中,若a n+1>a n,则{a n}是递增数列;若a n+1<a n,则{a n}为递减数列;=a n,则{a n}为常数列.若a n+1【预习评价】1.从定义上看,数列是特殊的函数,因此,表示数列除可以用通项公式外,还可以有哪些方法?提示还可以用列表法,图象法.2.数列单调性与函数单调性的区别和联系是什么?提示联系:若函数f(x)在[1,+∞)上单调,则数列f(n)也单调.反之不正确,例如f(x)=(x-52,数列f(n)单调递增,但函数f(x)在(1,+∞)上不是单调递增.4)区别:二者定义不同,函数单调性的定义:函数f(x)的定义域为D,设D⊇I,对任意x1,x2∈I,当x1<x2时,若f(x1)>f(x2),则f(x)在I上单调递减,若f(x1)<f(x2),则f(x)在I上单调递增,定义中的x1,x2不能用有限个数值来代替.数列单调性的定义:只需比较相邻的a n与a n+1的大小来确定单调性.知识点二数列的表示方法1.数列的递推公式:如果数列{a n}的第1项或前几项已知,并且数列{a n}的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.2.数列的表示方法:数列的表示方法有通项公式法、图象法、列表法、递推公式法.【预习评价】1.已知数列{a n }满足a 1=3,a n +1=2a n +1,则数列的第5项a 5=________,由此归纳出{a n }的一个通项公式为________,可以求得a 8=________.解析 ∵a 1=3,∴a 2=2a 1+1=7,a 3=2a 2+1=15,a 4=2a 3+1=31,a 5=2a 4+1=63,∴a 5=63.可以看出a n =2n +1-1, ∴a 8=29-1=511.答案 63 a n =2n +1-1 5112.数列的通项公式与递推公式有什么区别? 提示 不同点相同点通项公式 要根据某项的序号,直接用代入法求出该项都可确定一个数列,都可求出数列的任何一项递推公式可根据第1项或前几项的值,通过一次或多次赋值逐项求出数列的项,直至求出所需的项都可确定一个数列,都可求出数列的任何一项题型一 数列的函数特性【例1】 已知数列{a n }的通项公式是a n =(n +1)⎝ ⎛⎭⎪⎫1011n,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解 法一 a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n=(9-n )⎝ ⎛⎭⎪⎫1011n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.法二 根据题意,令⎩⎪⎨⎪⎧a n -1≤a na n ≥a n +1,即⎩⎨⎧n ×⎝ ⎛⎭⎪⎫1011n -1≤(n +1)⎝ ⎛⎭⎪⎫1011n (n +1)⎝ ⎛⎭⎪⎫1011n ≥(n +2)⎝ ⎛⎭⎪⎫1011n +1,解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.规律方法 1.由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n }这一条件.2.可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.【训练】 已知数列{a n }的通项公式为a n =nn 2+9(n ∈N *),写出其前5项,并判断数列{a n }的单调性.解 当n =1,2,3,4,5时,a n 依次为110,213,16,425,534,a n +1-a n =n +1(n +1)2+9-nn 2+9=-n 2-n +9[(n +1)2+9][n 2+9]. ∵函数f (x )=-x 2-x +9=-⎝ ⎛⎭⎪⎫x +122+374在[1,+∞)上单调递减,又f (1)=7>0,f (2)=3>0,f (3)<0,∴当n =1,2时,a n +1>a n ,当n ≥3,n ∈N *时,a n +1<a n , 即a 1<a 2<a 3>a 4>a 5>….∴数列{a n }的前3项是递增的,从第3项往后是递减的.方向1 由递推公式写出数列的项【例2-1】 已知数列{a n }的第一项a 1=1,以后的各项由递推公式a n +1=2a na n +2给出,试写出这个数列的前5项. 解 ∵a 1=1,a n +1=2a na n +2,∴a 2=2a 1a 1+2=23, a 3=2a 2a 2+2=2×2323+2=12,a 4=2a 3a 3+2=2×1212+2=25,a 5=2a 4a 4+2=2×2525+2=13.故该数列的前5项为1,23,12,25,13. 方向2 由数列的递推公式求通项公式【例2-2】 已知数列{a n }满足a 1=1,a n =a n -1+1n (n -1)(n ≥2),写出该数列前5项,并归纳出它的一个通项公式. 解 ∵a 1=1,a n =a n -1+1n (n -1)(n ≥2),∴a 2=a 1+12×1=1+12=32,a 3=a 2+13×2=32+16=53,a 4=a 3+14×3=53+112=74,a 5=a 4+15×4=74+120=95.故数列的前5项分别为1,32,53,74,95.由于1=2×1-11,32=2×2-12,53=2×3-13,74=2×4-14,95=2×5-15,故数列{a n }的一个通项公式为a n =2n -1n =2-1n . 方向3 构造数列法求通项公式【例2-3】 设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________.解析 法一 (累乘法):把(n +1)a 2n +1-na 2n +a n +1a n =0分解因式,得[(n +1)a n +1-na n ](a n +1+a n )=0. ∵a n >0,∴a n +1+a n >0, ∴(n +1)a n +1-na n =0, ∴a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ,∴a n a 1=1n .又∵a 1=1,∴a n =1n a 1=1n . 法二 (迭代法):同法一,得a n +1a n =nn +1,∴a n +1=nn +1a n ,∴a n =n -1n ·a n -1=n -1n ·n -2n -1·a n -2=n -1n ·n -2n -1·n -3n -2·a n -3…=n -1n ·n -2n -1·n -3n -2·…·12a 1=1n a 1.又∵a 1=1,∴a n =1n .法三 (构造特殊数列法):同法一,得a n +1a n =nn +1,∴(n +1)a n +1=na n , ∴数列{na n }是常数列, ∴na n =1·a 1=1, ∴a n =1n . 答案 1n规律方法 1.由递推公式写出通项公式的步骤 (1)先根据递推公式写出数列的前几项(至少是前3项).(2)根据写出的前几项,观察归纳其特点,并把每一项统一形式. (3)写出一个通项公式并证明.2.递推公式的常见类型及通项公式的求法(1)求形如a n +1=a n +f (n )的通项公式.将原来的递推公式转化为a n +1-a n =f (n ),再用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1). (2)求形如a n +1=f (n )a n 的通项公式.将原递推公式转化为a n +1a n =f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a na n -1= f (n -1),累乘可得a na 1=f (1)f (2)…f (n -1).课堂达标1.下列四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项; ②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列. 其中真命题的个数是( ) A.1 B.2 C.3D.4解析 只有③正确.①中,如已知a n +2=a n +1+a n , a 1=1,无法写出除首项外的其他项.②中a n =n +1n +2,④中-1和1排列的顺序不同,即二者不是同一数列. 答案 A2.数列2,4,6,8,10,…的递推公式是( ) A.a n =a n -1+2(n ≥2)B.a n =2a n -1(n ≥2)C.a 1=2,a n =a n -1+2(n ≥2)D.a 1=2,a n =2a n -1(n ≥2)解析 A ,B 中没有说明某一项,无法递推,D 中a 1=2,a 2=4,a 3=8,不合题意. 答案 C3.数列{x n }中,若x 1=1,x n +1=1x n +1-1,则x 2 017等于( )A.-1B.-12 C.12 D.1解析 ∵x 1=1,∴x 2=-12,∴x 3=1, ∴数列{x n }的周期为2,∴x 2 017=x 1=1. 答案 D4.已知数列{a n },对于任意的p ,q ∈N *,都有a p +a q =a p +q ,若a 1=19,则a 36=________.解析 由已知得a 1+a 1=a 1+1=a 2,∴a 2=29, 同理a 4=49,a 8=89,∴a 9=a 8+1=a 8+a 1=89+19=1, ∴a 36=2a 18=4a 9=4. 答案 45.求数列{-2n 2+29n +3}中的最大项. 解 由已知,得a n =-2n 2+29n +3=-2⎝ ⎛⎭⎪⎫n -2942+10818.由于n ∈N *,故当n 取距离294最近的正整数7时,a n 取得最大值108, ∴数列{-2n 2+29n +3}中的最大项为a 7=108.课堂小结1.{a n }与a n 是不同的两种表示,{a n }表示数列a 1,a 2,…,a n ,…,是数列的一种简记形式.而a n 只表示数列{a n }的第n 项,a n 与{a n }是“个体”与“整体”的从属关系.2.数列的表示方法:①图象法;②列表法;③通项公式法; ④递推公式法.3.通项公式和递推公式的区别:通项公式直接反映a n 和n 之间的关系,即a n 是n 的函数,知道任意一个具体的n 值,就可以求出该项的值a n ;而递推公式则是间接反映数列的式子,它是数列任意两个(或多个)相邻项之间的推导关系,不能由n 直接得出a n .基础过关1.已知数列{a n }满足a 1=2,a n +1-a n +1=0(n ∈N *),则此数列的通项a n 等于( ) A.n 2+1 B.n +1 C.1-nD.3-n解析 a n +1-a n =-1,利用累加法可以求得a n =3-n .选D. 答案 D2.已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +12n ,此数列的第3项是( ) A.1 B.12 C.34D.58解析 a 1=1,a 2=12a 1+12=1,a 3=12a 2+12×2=34.答案 C3.数列{a n }中,a n =n - 2 011n - 2 012,则该数列前100项中的最大项与最小项分别是( ) A.a 1,a 50 B.a 1,a 44 C.a 45,a 44D.a 45,a 50解析 a n =n - 2 011n - 2 012=1+2 012- 2 011n - 2 012.∴当n ∈[1,44]且n ∈N *时,{a n }单调递减, 当n ∈[45,+∞)且n ∈N *时,{a n }单调递减, 结合函数f (x )=2 012- 2 011x - 2 012的图象,可知(a n )max =a 45,(a n )min =a 44. 答案 C4.数列{a n }中,a 1=2,a n =a n +1-3,则14是{a n }的第________项.解析 a 1=2,a 2=a 1+3=5,a 3=a 2+3=8,a 4=a 3+3=11,a 5=a 4+3=14. 答案 55.数列{a n }中,a 1=2,a n =2a n -1(n ∈N *,2≤n ≤10),则数列{a n }的最大项为________.解析 ∵a 1=2,a n =2a n -1, ∴a n ≠0,∴a na n -1=2>1,∴a n >a n -1,即{a n }单调递增,∴{a n }的最大项为a 10=2a 9=4a 8=…=29·a 1=29·2=210=1 024. 答案 1 0246.已知数列{a n }中,a 1=1,a 2=23,1a n -2+1a n =2a n -1(n ∈N *,n ≥3),求a 3,a 4.解 由a 1=1,a 2=23且1a n -2+1a n =2a n -1,知当n =3时,1a 1+1a 3=2a 2,∴1a 3=2a 2-1a 1=3-1=2,∴a 3=12.当n =4时,1a 2+1a 4=2a 3,∴1a 4=2a 3-1a 2=4-32=52,∴a 4=25.7.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式.(1)a 1=0,a n +1=a n +2n -1(n ∈N *);(2)a 1=1,a n +1=a n +a n n +1(n ∈N *); (3)a 1=-1,a n +1=a n +1n (n +1)(n ∈N *). 解 (1)a 1=0,a 2=1,a 3=4,a 4=9.猜想a n =(n -1)2(n ∈N *).(2)a 1=1,a 2=32,a 3=42=2,a 4=52.猜想a n =n +12(n ∈N *).(3)a 1=-1,a 2=-12,a 3=-13,a 4=-14.猜想a n =-1n (n ∈N *).能力提升8.已知数列{x n }满足x 1=a ,x 2=b ,x n +1=x n -x n -1(n ≥2),设S n =x 1+x 2+…+x n ,则下列结论正确的是( )A.x 100=-a ,S 100=2b -aB.x 100=-b ,S 100=2b -aC.x 100=-b ,S 100=b -aD.x 100=-a ,S 100=b -a解析 x 1=a ,x 2=b ,x 3=x 2-x 1=b -a ,x 4=x 3-x 2=-a ,x 5=x 4-x 3=-b ,x 6=x 5-x 4=a -b ,x 7=x 6-x 5=a =x 1,x 8=x 7-x 6=b =x 2,∴{x n }是周期数列,周期为6,∴x 100=x 4=-a ,∵x 1+x 2+…+x 6=0,∴S 100=x 1+x 2+x 3+x 4=2b -a .答案 A9.已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则其前6项之和是( ) A.16B.20C.33D.120解析 a 1=1,a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,∴前6项之和为33.答案 C10.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 010=________,a 2 015=________.解析 依题意,得a 2 010=a 2×1 005=a 1 005=a 4×252-3=1,a 2 015=a 4×504-1=0.答案 1 011.在数列{a n }中,a 1=1,a n +1=a n 1+a n (n ∈N *),试归纳出这个数列的通项公式a n =________.解析 由a 1=1,a n +1=a n 1+a n得a 2=12,a 3=13,a 4=14,…,所以可归纳出a n =1n . 答案 1n12.已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.解 ∵a n a n -1=a n -1-a n ,∴1a n -1a n -1=1. ∴故n ≥2时,1a n =1a 1+⎝ ⎛⎭⎪⎫1a 2-1a 1+⎝ ⎛⎭⎪⎫1a 3-1a 2+…+⎝ ⎛⎭⎪⎫1a n -1a n -1=2+=n +1.∴1a n =n +1,∴当n ≥2时,a n =1n +1.a 1=12也适合上式,∴a n =1n +1(n ∈N *). 13.(选做题)设f (x )是定义在实数集R 上的函数,且满足f (x +2)=f (x +1)-f (x ),对数列f (n )(n ∈N *),若f (1)=lg 32,f (2)=lg 15,求f (2 016).解 f (3)=f (2)-f (1)=lg 15-lg 32=lg 10=1,f (4)=f (3)-f (2)=1-lg 15=lg 23,f (5)=f (4)-f (3)=lg 23-1=lg 115,f (6)=f (5)-f (4)=lg 115-lg 23=lg 110=-1,f (7)=f (6)-f (5)=-1-lg 115=-1+lg 15=lg 32=f (1),f (8)=f (7)-f (6)=lg 32+1=lg 15=f (2).∴f (n )是周期为6的周期数列.∴f (2 016)=f (336×6)=f (6)=-1.。
第2课时 数列的性质和递推公式1.已知a n +1-a n -3=0,则数列{a n }是 A.递增数列 B.递减数列 C.常数列D.不能确定解析a n +1-a n =3>0,故数列{a n }为递增数列. 答案A2.数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,则a 6= A.3B.5C.8D.13解析 由条件知a 3=2,a 4=3,a 5=5,a 6=8. 答案C3.已知数列{a n }中,a 1=1,a n +1a n =12,则数列{a n }的通项公式是 A.a n =2n B.a n =12nC.a n =12n -1D.a n =1n2解析a 1=1,a 2=12,a 3=14,a 4=18,观察得a n =12n -1.答案C4.若数列{a n }满足a n +1=2a n -1,且a 8=16,则a 6=________. 解析 由a n +1=2a n -1,得a n =12(a n +1+1),∴a 7=12(a 8+1)=172,a 6=12(a 7+1)=194.答案1945.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则a 2 018=________.解析a 1=2,由a n +1=1+a n1-a n,得a 2=-3,a 3=-12,a 4=13,a 5=2,∴数列{a n }的周期为4, ∴a 2 018=a 4×504+2=a 2=-3. 答案 -3[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是A.1B.12C.34D.58解析 由a 1=1,∴a 2=12a 1+12=1,依此类推a 4=12.答案B2.在递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值X 围是 A.RB.(0,+∞)C.(-∞,0)D.(-∞,0]解析 ∵{a n }是递减数列, ∴a n +1-a n =k (n +1)-kn =k <0. 答案C3.数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是 A.第4项B.第5项C.第6项D.第7项解析a n =3n 2-28n =3⎝⎛⎭⎪⎫n -1432-1963,故当n =5时,a n 的最小值为a 5=-65. 答案B4.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 A.259B.2516C.6116D.3115解析 由a 1·a 2·a 3·…·a n =n 2,(n ≥2)得a 1·a 2·a 3·…·a n -1=(n -1)2,(n ≥3),∴a n =n 2(n -1)2,(n ≥3),∴a 3=94,a 5=2516,∴a 3+a 5=6116.答案C5.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于 A.-165B.-33C.-30D.-21解析 由已知得a 2=a 1+a 1=2a 1=-6,∴a 1=-3.∴a 10=2a 5=2(a 2+a 3)=2a 2+2(a 1+a 2)=4a 2+2a 1=4×(-6)+2×(-3)=-30. 答案C6.(能力提升)在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎪⎫1+1n ,则a n =A.2+lg nB.2+(n -1)lg nC.2+n lg nD.1+n +lg n解析 由a n +1=a n +lg ⎝⎛⎭⎪⎫1+1n ⇒a n +1-a n =lg ⎝ ⎛⎭⎪⎫1+1n ,那么a n =a 1+(a 2-a 1)+…+(a n -a n -1)=2+lg 2+lg 32+lg 43+…+lg n n -1=2+lg ⎝ ⎛⎭⎪⎫2×32×43×…×n n -1=2+lg n .答案A二、填空题(每小题5分,共15分)7.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第7项的值为________.解析由数列{a n }的首项和递推公式可以求出a 2=14,a 3=17,…,观察得到通项公式a n =13n -2,所以a 7=119.答案1198.已知函数f (x )的部分对应值如表所示.数列{a n }满足a 1=1,且对任意n ∈N *,点(a n ,a n +1)都在函数f (x )的图象上,则a 2 017的值为________.解析 由题知,a n +1=f (a n ),a 1=1.∴a 2=f (1)=3,a 3=f (a 2)=f (3)=2,a 4=f (a 3)=f (2)=1,…,依次类推,可得{a n }是周期为3的周期数列,∴a 2 017=a 672×3+1=a 1=1.答案 19.(能力提升)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0,则a n =________.解析 (n +1)a 2n +1-na 2n +a n +1·a n =[(n +1)a n +1-na n ](a n +1+a n )=0, ∵a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1. 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ·n -2n -1·n -3n -2·…·12·1=1n. 答案1n三、解答题(本大题共3小题,共35分)10.(11分)已知数列{a n }中,a 1=1,a 2=2,以后各项由a n =a n -1+a n -2(n ≥3)给出. (1)写出此数列的前5项; (2)通过公式b n =a na n +1构造一个新的数列{b n },写出数列{b n }的前4项. 解析 (1)因为a n =a n -1+a n -2(n ≥3), 且a 1=1,a 2=2,所以a 3=a 2+a 1=3,a 4=a 3+a 2=3+2=5,a 5=a 4+a 3=5+3=8. 故数列{a n }的前5项依次为a 1=1,a 2=2,a 3=3,a 4=5,a 5=8.(2)因为b n =a na n +1, 且a 1=1,a 2=2,a 3=3,a 4=5,a 5=8,所以b 1=a 1a 2=12,b 2=a 2a 3=23,b 3=a 3a 4=35,b 4=a 4a 5=58.11.(12分)已知数列{a n }中,a 1=1,a n +1=nn +1a n . (1)写出数列{a n }的前5项; (2)猜想数列{a n }的通项公式; (3)画出数列{a n }的图象.解析 (1)a 1=1,a 2=11+1×1=12,a 3=21+2×12=13,a 4=31+3×13=14,a 5=41+4×14=15.(2)猜想:a n =1n.(3)图象如图所示:12.(12分)已知函数f (x )=1-2x x +1(x ≥1),构造数列a n =f (n )(n ∈N *). (1)求证:a n >-2;(2)数列{a n }是递增数列还是递减数列?为什么?解析 (1)证明 因为f (x )=1-2x x +1=3-2(x +1)x +1=-2+3x +1,所以a n =-2+3n +1.因为n ∈N *,所以a n >-2. (2)数列{a n }为递减数列.因为a n =-2+3n +1, 所以a n +1-a n =⎝⎛⎭⎪⎫-2+3n +2-⎝ ⎛⎭⎪⎫-2+3n +1=3n +2-3n +1=-3(n +2)(n +1)<0, 即a n +1<a n ,所以数列{a n }为递减数列.。
2011-2012学年上学期高一数学备课组教案应用举例探究性质(1)A跟B这两个集合有先后顺序,/:A->B和/:B-A是截然不同的;(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思.(3)集合A中的元素不可剩,集合B中的元索可剩余.补充:映射/:A-B 'I', A中元索成为原象,B屮与A屮元索相对应的元素称为象.例1:下列哪些对应是从集合A到集合B的映射?(1) A={P\P是数轴上的点}, B二R,对应关系数轴上的点与它所代表的实数对应;(2 ) A={P\P是平面直角坐标中的点}, B = [(x,y)\xe R,ye/?},对应关系/ :平面直角处标系中的点与它的坐标对应;(3) A={三角形}, B={x|兀是圆},对应关系/:每一个三角形都对应它的内切圆;(4 ) A={x\x是新华中学的班级},B = {x\x是新华屮学的学生},对应关系/:每一个班级都对应班里的学生.思考:将(3)小的对应关系/改为:每一个圆都对应它的内接三角形;(4)中的对应关系/改为:每一个学生都对应他的班级,那么对•应f : B-A是从集合B到集合A的映射吗?例2:在下图中,图(1), (2), (3)用箭头所标明的A中元素与B中元素的对应法则,下列情况是不是映射?明,挖掘概念中学生难理解,易混乱的问题.通过例题讲解进一步掌握本节课的重点内容探究性质,激发学生学习兴趣.例题讲解,便于理解.性质课堂练习及延展A 求平方B、49 /判定是否是映射主要看两点:一是A集合屮的元素都要有象,但B屮元素未必要有原象;二是A中元素与B中元素只能出现“一对一”或“多对一”的对应形式,不能出现“多对一”的形式.完成下面练习.1. (x, y)在/下象是(x+y, xy),则(3, 4)的象是_________(1, -6)的原象是____________ .归纳知识、构建知识网及时体验提髙,增加题目多样性.析:原象象(x, y) (x+y, xy)(3, 4) (7,⑵(2,・3)或者(・3, 2) (1, -6)⑵ /(%) = <的图象X, (x> 1)5.设兀w (-oo,+oo),求函数/(x) = 2|x-l|-3|x| 的解析式, 并画出它的图象.解:函数的解析式为一2—3兀,兀>1;-3,x = l;/(%) = < 一5x + 2,0 v x < 1;2,兀=0;x + 2,x v 0.图像变式:求函数/(x) = 2|x-l|-3|x|的最大值. 析:出上面可得/(x)max = 2.1. 映射的定义;2. 彖与原彖定义;3. 判断是否是映射的条件;4. 画分段函数的图像;5. 求函数的解析式.主备课教师: 邱惠彬 备课组老师:课堂小 结课堂小 结,构造 知识体 系.。
函数的表示法(第2课时)教学设计一、内容和内容解析1.内容实际问题中的函数表示.2.内容解析数学教育的终极目标是让学生:会用数学的眼光观察世界、会用数学的思维思考世界、会用数学的语言表达世界.其中“会用数学的语言表达世界”体现的是数学的应用价值,即利用数学模型解决实际问题.通过第1课时的学习,学生已基本掌握了函数的三种表示法及其特点,并且初步体会了在具体的问题(分段函数)中如何选择适当的表示法解决数学问题.那么,如何选择适当的表示法解决实际问题呢?通过本节课的学习,学生应有所体会.在本节课中不仅可以进一步研究函数本身,将实际问题数学化,应用函数解决实际问题,而且可以加深对函数概念的理解,学会比较选择最优解法.例7是关于数学成绩的问题,贴近学生生活,体现了列表法向图象法的转化,通过对三名同学成绩的简单分析,学生可进一步体会图象法的直观性,可提倡学生用科学的方法看待自身成绩.例8是2019年国家热点问题——个税的新计算方式.函数以列表法给出,可通过对条件的分析,转化成解析法和图象法,体现了分段函数的应用价值.基于以上分析,确定本节课的教学重点:选择恰当的方法表示具体问题中的函数关系.二、目标和目标解析1.目标选择恰当的方法表示具体问题中的函数关系.2.目标解析达成上述目标的标志是:学生会正确选择合适的表示法解决教科书例7、例8所示的问题,结合例7,例8的学习,初步体会建立函数模型解决实际问题的过程,发展数学建模素养。
三、教学问题诊断分析经过义务教育阶段的数学学习,学生对具体数学知识和问题的求解比较熟悉,而解决带有情境的实际问题的能力相对欠缺,于是新版教材专门对前版教材结构进行了调整,搭建了两个与学生密切相关、应用性很强的实际问题情境,对其进行合理分析,培养学生选择恰当的方法表示具体问题中的函数关系的能力.对于例7,可能有的同学觉得表3.1-4包含了三名同学的6次成绩数据,已经很直观了,教师可进行相应解释:列表法虽然具有“不需要计算就可以直接看出与自变量的值相对应的函数值”的优点,但是不利于发现每位同学的成绩变化情况,以及与班级平均分的关系,换句话说仍然不够直观.学生一般可自然想到更加直观的表示方式——图象法.但是当学生们在同一直角坐标系中画出了三位同学6次成绩及班级6次平均分共24个散点时,问题随之而来——无法区分每个散点数据属于哪个学生,其直观性更是无从谈起.于是教师可进行相应引导:为了更容易看出一个同学的学习情况,我们将表示每位同学成绩的函数图象(离散的点)用虚线连接.在此基础上,可进一步引导学生对三名同学的数学学习情况进行分析.对于例8,学生首先面对的问题就是对题目的理解.带有情境的实际问题往往篇幅略长,因此需要给学生充足的时间读懂题目,明确研究对象,理清题中变量间的关系,是解决问题的前提和保障.之后就需要依据题目建立适当的数学模型,解决问题.本题是分段函数模型,每一段都是一次函数,相对简单,但要注意分段时自变量取值的原则——不重不漏.四、教学支持条件分析本节课的教学重点是选择恰当的方法表示具体问题中的函数关系.可借助图形计算器、几何画板、Geogebra等技术工具做出函数图象,用图象法表示函数,对问题进行直观分析.五、教学过程设计引导语:对于一个具体的问题,如果涉及函数,你会选择恰当的方法表示问题中的函数关系吗?这节课我们通过两个实例来做相关研究.(一)实际问题问题1:表3.1-4是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表.你能直接通过表3.1-4对这三位同学在高一学年的数学学习情况做一个分析吗?师生活动:教师给出问题后让学生先简单独立思考并尝试写出结论,大部分同学无法直接通过表3.1-4所给数据分析这三位同学在高一学年的数学学习情况.如有个别同学提出可以,教师可提醒:表3.1-4不太容易分析每位同学的成绩变化情况,不够直观,因而会制约结论的形成.追问:你选择哪种表示法分析这三位同学在高一学年的数学学习情况?为什么?学生会首先想到图象法.教师让学生在同一直角坐标系中画出与表3.1-4所对应的函数图象,并让学生尝试利用图象得出结论.面对毫无规律的24个散点,学生基本没有头绪.此时教师可做适当引导:为了更容易看出一个同学的学习情况,我们将表示每位同学成绩的函数图象(离散的点)用虚线连接.并用多媒体展示教科书第70页图3.1-6,然后让学生分组讨论,分享自己眼中的结论.最后教师找几位学生代表回答与补充,得出结论.设计意图:问题1是架设学生熟悉的数学成绩情境,引导学生直接通过列表法无法直观的看出学生成绩的变化情况,不要直接利用表格做出一些并不准确的结论,而应另寻他法;追问是为了启发学生主动选择更加直观的图象法解决问题,培养从列表法转到图象法表示函数的能力.正确合理地做出图象,问题就解决了一半.问题2:(教科书第71页练习1)下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车离开家后一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我从家出发后,心情轻松,一路缓缓加速行进.师生活动:教师可在多媒体上展示问题,让学生独立完成,然后找学生回答.对于选项C,可给出参考:我从家出发后,发现时间还早,于是慢慢放缓了脚步.设计意图:培养学生将实际情境转化成数学图象的能力,训练思维与表达能力.问题3:依法纳税是每个公民应尽的义务,个人取得的所得应依照《中华人民共和国个人所得税法》向国家缴纳个人所得税(简称个税).2019年1月1日起,个税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为个税税额=应纳税所得额×税率-速算扣除数. ①应纳税所得额的计算公式为应纳税所得额=综合所得收入额-基本减除费用-专项扣除-专项附加扣除-依法确定的其他扣除. ②其中,“基本减除费用”(免征额)为每年60 000元.税率与速算扣除数见表3.1-5.(1)设全年应纳税所得额为应缴纳个税税额为你能求出y=f(t)并画出图象吗?(2)小王全年综合所得收入额为189 600元,假定缴纳的基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是8%,2%,1%,9%,专项附加扣除是52 800元,依法确定其他扣除是4 560元,那么他全年应缴纳多少综合所得个税?师生活动:给学生充足的时间阅读题目,理清计算应缴纳个税税额的计算步骤.之后可将教科书第71页前三行用PPT展示,帮助学生了解解题脉络.(1)教师用PPT展示个税计算公式及表3.1-5,给学生适当时间阅读思考.之后可进行如下追问.追问:由表3.1-5第二列,你认为y=f(t)是什么函数?学生基本都可回答出是分段函数.教师可板书y=f(t)的前两段,带领学生感受求解析式的过程,后几段可让学生自己完成,注意提示最后写成分段函数的规范形式(大括号、范围不重不漏),并让学生自己画出相应图象,之后可利用多媒体将学生代表的图象放到屏幕上展示,最终确定正确结果.(2)利用之前明确的计算步骤,结合第(1)问的解析式,让学生自己解决剩余问题.设计意图:帮助学生读懂题目,提高学生的数学阅读能力,以及将实际问题数学化的能力;引导学生将表3.1-5的函数表示方式转化成解析式的方式,建立多元表示之间的联系。
《函数的概念及其表示》教案第一课时: 1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。
教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-.B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?一次函数(0)y ax b a =+≠、二次函数2(0)y ax bx c a =++≠的定义域与值域? ⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。