优选第六章弹性波波动方程及其解
- 格式:ppt
- 大小:2.28 MB
- 文档页数:84
习题六6-1频率为Hz 41025.1⨯=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量211/1090.1m N E ⨯=,棒的密度33/106.7m Kg ⨯=ρ.求该纵波的波长. 分析 纵波在固体中传播,波速由弹性模量与密度决定。
解:波速ρ/E u =,波长νλ/u = 2/0.4E m λρν==6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-=(1)求波的振幅、波速、频率及波长;(2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同.解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λπϕωππ-+=-=得0.04A m = ; /2 2.5/2 1.25Hz νωπππ===;2, 2.0m ππλλ== 2.5/u m s λν==(2)0.314/m A m s νω==(3)t=1(s)时波形方程为:)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-=x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。
依旋转矢量法可求t=0时的各点的相位。
解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为)t cos(A y ϕ+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样? 分析 无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于题图题图6-3t=坐标方向的正负关系)即可求解波的表达。
弹性动力学主要目标是在给定扰动源及边界条件、初始条件下求解弹性物体的动力响应。
解答的形式有两种:一种是波动解,一种是振动解。
前者描述行波在弹性介质中的传播过程,后者描述弹性体的振动。
为了说明两者的联系与差异,首先考察波动与振动两个物理现象。
一个原来处于静止状态的物体,当期局部受到突然的扰动,并不能立即引起物体各部分的运动。
如图1.2所示的一根半无限长杆端部受到打击时,远离杆端的区域并不能立即感受到端部的打击信号,而要经过一定的时间后才能接受到这个信号。
这是动力问题和静力问题最根本的区别。
实际上由于连续介质中的各个指点由某种约束力而彼此联系起来,在未受到扰动之前,质点之间的相互作用力处于平衡状态。
当某一个质点受到扰动以后,它就要偏离原来的平衡位置而进入运动状态。
由于质点间相对位置的变化,使得受扰动质点痛其周围质点之间增加了附加的弹性力,从而与受扰动质点相邻的质点也必然受到影响而进入运动状态。
这种作用依次传递下去,便形成一个由扰动源开始的波动现象。
这种扰动借质点间的弹性力而逐渐传播的过程,称为弹性波。
如果介质是无限的,扰动将会随时间的发展一直传播出去。
然而一个实际的物体总是有边界的,当扰动到达边界时,将要和边界发生相互作用而产生反射。
对一个有界的物体,由于扰动在其边界上来回反射,从而使得整个物体就会呈现出在其平衡位置附近的一种周期性的振荡现象,称之为弹性体的振动。
弹性波和弹性体的振动之间存在着本质的内在联系。
这两种现象的形成有着相同的机制,它们都是由介质的弹性和惯性两个基本性质所决定。
弹性性质有使发生了位移的质点回复到原来平衡位置的作用,而运动质点的惯性有使当前的运动状态持续下去的作用,或者说弹性是贮存势能的要素,惯性是维持动能的表征。
正由于这两种特性的存在,系统的能量才得以保持和传递,外部的扰动才能激发起弹性波和弹性体的振动。
弹性波的传播和弹性体的振动,实际上可以看作是同一物理问题的不同表现形式。
现在我们讨论在三维无限空间中的波动问题:200(3.1)|()|()tt t t t u a u u M u M ϕψ==⎧=Δ⎪=⎨⎪=⎩,,x y z −∞<<+∞,,,0x y z t −∞<<+∞>(,,).M M x y z =其中M 代表空间中任意一点, 这个定解问题采用求平均法来求解.11(,)(()())()22()().22x at x atx at x at x at x at u x t x at x at d a t t d d t at at ϕϕψξξϕξξψξξ+−++−−=−+++⎛⎞∂=+⎜⎟∂⎝⎠∫∫∫先回忆一维的达朗贝尔公式的变形称为函数在区间[x -at , x +at ]1()2x at x atd at ωξξ+−∫()ωξ上的平均值,这个平均值与x, 半径at 和函数有关,()ωξ1(,)().2x at x atv x t d at ωωξξ+−=∫记作于是达朗贝尔公式的变为()(,)(,)(,).u x t tv x t tv x t tϕψ∂=+∂上述方法称为球平均法.23123(,,)(),x x x C R ω∈设函数现在考虑该函数在球面2222112233:()()()r C x x x rξξξ−+−+−=上的平均值.123(,,),r C ξξξ∈对于采用球坐标:123,1,2,3,sin cos ,sin sin ,cos ,0,02.i i i x r i ξααθϕαθϕαθθπϕπ=+====≤≤≤≤21231122332002123112233100211(,,,)(,,),(3.3)41(,,,)(,,),(3.4)4sin ,sin ,r r v x x x r x r x r x r d r v x x x r x r x r x r d d r d d d d d ππωππωωααασπωααασπσθθϕσθθϕ=+++=+++==∫∫∫∫或者 其中面积单元:记作引理4.2: 对于给定的则由(3.3)或(3.4)确定的函数v 满足PDE 2220(3.5)v v v r r r∂∂−Δ+=∂∂以及初始条件123(,,)x x x ω在球面上的平均值:r C 23123(,,)(),x x x C R ω∈12312321122332200(,,,)(,,,)11(,,)(3.7)44r r rC v x x x r v x x x r x r x r x r d d r r ωππωααασωσππΔ=Δ=Δ+++=Δ∫∫∫∫故由(3.3)有再由复合函数的求导法则应用奥高公式12300(,,),0.(3.6)r r v v x x x r ω==∂==∂证明:由于沿单位球面的积分可以在积分号下求导r C 33212001111,44r k k r k k kkC v d d r x r x ππωωασασππ==∂∂∂==∂∂∂∑∑∫∫∫∫21,(3.8)4rD v d r r ωπ∂=ΔΩ∂∫∫∫其中是由所围成的区域.r D r C 22000sin ,r r D d d d d ππωωρθθϕρΔΩ=Δ∫∫∫∫∫∫∵2200sin ,r r r D C d r d d d r ππωωθθϕωσ∂∴ΔΩ=Δ=Δ∂∫∫∫∫∫∫∫由(3.8)及上式有223211,(3.9)24r rr D C v d d r r r ωωσππ∂−∴=ΔΩ+Δ∂∫∫∫∫∫由(3.7),(3.8)和(3.9)变知函数v 满足方程(3.5).下面验证由(3.3)或(3.4)确定的v 满足初始条件(3.6).由(3.4)知211223312300001(,,)(,,).4r r r v x r x r x r d x x x ππωααασωπ==∴=+++=∫∫又由(3.8),利用积分中值定理知31231232123141(,,)(,,),433(,,).r v r r r r D πωξξξωξξξπξξξ∂=Δ=Δ∂其中是内的某点1231230,(,,)(,,),0(0).v r x x x r rξξξ∂→∴→→∂当时趋于球心引理4.2得证.引理4.3: 设v 是由(3.3)确定的函数,则123123(,,,)(,,,)(3.10)u x x x t tv x x x at =是定解问题2001230()|0,|(,,)tt t t t u a u i u u x x x ω==⎧−Δ=⎪⎨==⎪⎩的解.证明:直接计算,得 Δu = t Δv( x1 , x2 , x3 , at ),ut = v( x1 , x2 , x3 , at ) + atvr ( x1 , x2 , x3 , at ), utt = 2avr ( x1 , x2 , x3 , at ) + a 2tvrr ( x1 , x2 , x3 , at ),其中 vr ( x1 , x2 , x3 , at ) 是导数 vr ( x1 , x2 , x3 , r ) 在r=at的值. 直接验算,得2 utt − a Δu = a t (vrr − Δv + vr ) = 0. at 这正好是方程(3.5)在r=at的情形.2 2关于满足定解条件, 可由表达式(3.10)和(3.6)直接推出.引理4.4: 设 u ( x1 , x2 , x3 , t ) 是定解问题(i)的解,则 ∂ u ( x1 , x2 , x3 , t ) = u ( x1 , x2 , x3 , t ) (3.11) ∂t 是定解问题⎧ utt − a 2 Δu = 0 ⎪ ( ii ) ⎨ ⎪ u |t = 0 = ω ( x1 , x2 , x3 ), ut |t = 0 = 0 ⎩的解.证明:直接计算,得⎞ ∂ 2u ∂ ⎛ ∂ 2u 2 2 − a Δu = ⎜ 2 − a Δu ⎟ = 0, 2 ∂t ∂t ⎝ ∂t ⎠ ∂u u t =0 = = ω ( x1 , x2 , x3 ), ∂t t =0 utt =0∂u = 2 = a 2 Δu ( x1 , x2 , x3 , 0) = 0. ∂t t =02所以引理得证.利用叠加原理, 将Cauchy问题(3.1)写成定解问题⎧ utt − a 2 Δu = 0 ⎪ ( iii ) ⎨ ⎪ u |t = 0 = ϕ ( x1 , x2 , x3 ), ut |t = 0 = 0 ⎩ ⎧ utt − a 2 Δu = 0 ⎪ ( iv ) ⎨ ⎪ u |t = 0 = 0, ut |t = 0 = ψ ( x1 , x2 , x3 ) ⎩的叠加. 设 u1 ( x, y, z , t ), u2 ( x, y, z , t ), 是定解问题(iii)和(iv) 的解,则 u = u1 ( x, y, z , t ) + u2 ( x, y, z , t ) 就是Cauchy问题 (3.1)解.由引理4.3知,只要取 ω = ψ 就可得到定解问题(iv)的解t 2π π ∴ u2 ( x, y , z , t ) = ∫0 ∫0 ψ ( x1 + α1at , x2 + α 2 at , x3 + α 3at ) sin θ dθ dϕ 4π 1 = 2 ∫∫M )ψ dS , dS 是球面面积微元 4π a t Sat (⎞ ∂⎛ 1 ∴ u1 ( x, y, z , t ) = ⎜ ϕ dS ⎟ ⎜ 4π a 2t S ∫∫ ) ⎟ ∂t ⎝ (M at ⎠由引理4.4知,只要取 ω = ϕ 就可得到定解问题(iii)的解所以Cauchy问题(3.1)的解为∂⎛ 1 u( x , y , z , t ) = ⎜ ∂t ⎝ 4πa 2 t1 ⎞ ∫∫Sat ( M ) ϕ dS ⎟ + 4πa 2 t ∫∫Sat ( M )ψ dS (3.12) ⎠可写为:1 ∂ ϕ ( M ′) ψ ( M ′) u( M , t ) = [ ∫∫ dS + ∫∫ dS ] Sat ( M ) 4πa ∂t Sat ( M ) at at上式称为三维波动方程的泊松公式,它给出了三维无界 空间波动方程的初值问题的解.其中 M ′ 表示以 M 为中 心 at 为半径的球面 S at 上的动点.Mϕ ( x1 , x2 , x3 ) ∈ C 3 ,ψ ( x1 , x2 , x3 ) ∈ C 2 , 定理4.9:若函数则由Poisson公式(3.12)确定的函数u(x, y, z, t)就是 Cauchy问题的解.泊松公式的物理意义很明显,它说明定解问题的解 M 在M点t 时刻之值,由以M为中心at 为半径的球面 S 上 at 的初始值而确定. 如图,设初始扰动限于空间某个区域 T0 , d 为 M 点 到 T0 的最近距离, D为M 点与 T0 的最大距离,则:T0dDM1.当 at < d ,即 t < d / a 时, S at 与 T0 不相交, ϕ ( M ′ ) 和 ψ ( M ′) 之值均为零,因而两个积分之值亦均为零, 即 u( M , t ) = 0 .这表示扰动的前锋尚未到达.M2.当 d < at < D ,即 d / a ≤ t ≤ D / a 时, S at 与 T0 相 交, ϕ ( M ′ ) , ψ ( M ′ ) 之值不为零,因而积分之值亦不为零, 即 u( M , t ) ≠ 0 ,这表明扰动正在经过M点. 3.当 at > D ,即 t > D / a , S at 与 T0 也不相交,因而同 样 u( M , t ) = 0 ,这表明扰动的阵尾已经过去了. 这种现象在物理学中称为惠更斯(Huygens) 原理或无后效现象.MM∂u =0 ∂z20001()|(,)|(,)tt xx yy t t t u a u u u x y u x y ϕϕ==⎧=+⎪=⎨⎪=⎩,x y −∞<<+∞,,0x y t −∞<<+∞>要想从泊松公式得到上述问题解的表达式,就应将泊松公式中两个沿球面的积分转化成沿圆域内的积分,下面以为例说明这个转化方法.先将这个积分拆成两部分:M at S 222()()()x y at ξη−+−≤:M at C 11d 4πM at C S a at ϕ∫∫12111111d d d 4π44πM at S S S S S S a at a at a atϕϕϕπ=+∫∫∫∫∫∫其中分别表示球面的上半球面与下半球面.由于被积函数不依赖于变量z ,所以上式右端两个积分是相等的,即12,S S M atS 11111d d 4π2πM at S S S S a at a atϕϕ=∫∫∫∫把右端的曲面积分化成二重积分可得11222212222(,)11d d d 4π2π()()(,)1d d 2π()()M M at at M at S C C at S a at a at a t x y a a t x y ϕϕξηξηξηϕξηξηξη=−−−−=−−−−∫∫∫∫∫∫同理002222(,)11d d d 4π2π()()M M at at S C S a at a a t x y ϕϕξηξηξη=−−−−∫∫∫∫将这两个等式代入三维波动方程的泊松公式,即得问题的解为022*******(,)1(,,)d d 2π()()(,)d d ()()M at M at C C u x y t a t a t x y a t x y ϕξηξηξηϕξηξηξη⎧∂⎪=⎨∂−−−−⎪⎩⎫⎪+⎬−−−−⎪⎭∫∫∫∫当时, ;表示扰动的前锋尚未到达.当时, ;表明扰动正在经过M 点.当时,由于圆域包含了区域,所以d t a <(,,)0u x y t =d D t a a ≤≤(,,)0u x y t ≠D t a >0T :M at C ,这种现象称为有后效, 即在二维情(,,)0u x y t ≠形,局部范围内的初始扰动,具有长期的连续的后效特性,扰动有清晰的“前锋”,而无“阵尾”,这一点与球面波不同.平面上以点(ξ, η)为中心的圆周的方程在空间坐标系内表示母线平行与z 轴的直圆柱面,所以在过(ξ, η)点平行于z 轴的无限长的直线上的初始扰动,在时间t 后的影响是在以该直线为轴, at 为半径的圆柱面内,因此解称为柱面波.222()()x y r ξη−+−=将给定的初始条件与代入三维波动方程的泊松公式,得到所要求的解为:设已知, ,求方程相应柯西问题的解.(,,)x y z x y z ϕ=++(,,)0x y z ψ=(,,)x y z ϕ(,,)x y z ψ2ππ001(,,,)4πu x y z t a t∂=∂∫∫2(sin cos sin sin cos )()sin d d x y z at at at θϕθϕθθϕθ+++++x y z =++2tt u a u =Δ。