优选第六章弹性波波动方程及其解
- 格式:ppt
- 大小:2.28 MB
- 文档页数:84
习题六6-1频率为Hz 41025.1⨯=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量211/1090.1m N E ⨯=,棒的密度33/106.7m Kg ⨯=ρ.求该纵波的波长. 分析 纵波在固体中传播,波速由弹性模量与密度决定。
解:波速ρ/E u =,波长νλ/u = 2/0.4E m λρν==6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-=(1)求波的振幅、波速、频率及波长;(2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同.解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λπϕωππ-+=-=得0.04A m = ; /2 2.5/2 1.25Hz νωπππ===;2, 2.0m ππλλ== 2.5/u m s λν==(2)0.314/m A m s νω==(3)t=1(s)时波形方程为:)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-=x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。
依旋转矢量法可求t=0时的各点的相位。
解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为)t cos(A y ϕ+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样? 分析 无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于题图题图6-3t=坐标方向的正负关系)即可求解波的表达。
弹性动力学主要目标是在给定扰动源及边界条件、初始条件下求解弹性物体的动力响应。
解答的形式有两种:一种是波动解,一种是振动解。
前者描述行波在弹性介质中的传播过程,后者描述弹性体的振动。
为了说明两者的联系与差异,首先考察波动与振动两个物理现象。
一个原来处于静止状态的物体,当期局部受到突然的扰动,并不能立即引起物体各部分的运动。
如图1.2所示的一根半无限长杆端部受到打击时,远离杆端的区域并不能立即感受到端部的打击信号,而要经过一定的时间后才能接受到这个信号。
这是动力问题和静力问题最根本的区别。
实际上由于连续介质中的各个指点由某种约束力而彼此联系起来,在未受到扰动之前,质点之间的相互作用力处于平衡状态。
当某一个质点受到扰动以后,它就要偏离原来的平衡位置而进入运动状态。
由于质点间相对位置的变化,使得受扰动质点痛其周围质点之间增加了附加的弹性力,从而与受扰动质点相邻的质点也必然受到影响而进入运动状态。
这种作用依次传递下去,便形成一个由扰动源开始的波动现象。
这种扰动借质点间的弹性力而逐渐传播的过程,称为弹性波。
如果介质是无限的,扰动将会随时间的发展一直传播出去。
然而一个实际的物体总是有边界的,当扰动到达边界时,将要和边界发生相互作用而产生反射。
对一个有界的物体,由于扰动在其边界上来回反射,从而使得整个物体就会呈现出在其平衡位置附近的一种周期性的振荡现象,称之为弹性体的振动。
弹性波和弹性体的振动之间存在着本质的内在联系。
这两种现象的形成有着相同的机制,它们都是由介质的弹性和惯性两个基本性质所决定。
弹性性质有使发生了位移的质点回复到原来平衡位置的作用,而运动质点的惯性有使当前的运动状态持续下去的作用,或者说弹性是贮存势能的要素,惯性是维持动能的表征。
正由于这两种特性的存在,系统的能量才得以保持和传递,外部的扰动才能激发起弹性波和弹性体的振动。
弹性波的传播和弹性体的振动,实际上可以看作是同一物理问题的不同表现形式。