基因定点诱变常用方法
- 格式:ppt
- 大小:1.35 MB
- 文档页数:8
基因定点突变方法及其应用
基因定点突变是指在基因组中特定的位置发生的变异事件。
这些定点
突变可以是单个碱基的替代、插入或删除,也可以是染色体片段的重排和
结构变化。
基因定点突变是遗传学和分子生物学研究中的重要技术,具有
广泛的应用前景。
在基因定点突变的研究中,常用的方法包括基于随机突变和基于定点
突变的方法。
一、基于随机突变的方法:
1.化学诱变:通过化学物质如亚硫酸乙基甲酯(EMS)或N-亚硝基-N-
乙基脲(ENU)等诱导基因组范围内的突变。
这些突变通过对群体进行筛选
和筛选,从而找到目标基因的突变。
2.辐射突变:用射线如X射线、γ射线,或放射性物质如乙烯基腈,等辐射处理生物体,以诱导其基因组上的随机突变。
基于随机突变的方法广泛应用于物种、疾病、发育和进化等研究中。
它们可以帮助揭示基因功能的重要性和与特定物种和表型相关的基因。
二、基于定点突变的方法:
1.基因敲除/敲入:通过合成受损的DNA片段或外源DNA片段,将其
导入到目标基因中,从而造成其功能异常或置换为新的基因序列。
这种方
法可用于明确或验证基因的功能,并探索特定突变的表型影响。
基因定点突变全攻略一、定点突变得目得把目得基因上面得一个碱基换成另外一个碱基.二、定点突变得原理定点突变就是指通过聚合酶链式反应(PCR)等方法向目得DNA片段(可以就是基因组,也可以就是质粒)中引入所需变化(通常就是表征有利方向得变化),包括碱基得添加、删除、点突变等。
定点突变能迅速、高效得提高DNA所表达得目得蛋白得性状及表征,就是基因研究工作中一种非常有用得手段。
体外定点突变技术就是研究蛋白质结构与功能之间得复杂关系得有力工具,也就是实验室中改造/优化基因常用得手段。
蛋白质得结构决定其功能,二者之间得关系就是蛋白质组研究得重点之一。
对某个已知基因得特定碱基进行定点改变、缺失或者插入,可以改变对应得氨基酸序列与蛋白质结构,对突变基因得表达产物进行研究有助于人类了解蛋白质结构与功能得关系,探讨蛋白质得结构/结构域。
而利用定点突变技术改造基因:比如野生型得绿色荧光蛋白(wtGFP)就是在紫外光激发下能够发出微弱得绿色荧光,经过对其发光结构域得特定氨基酸定点改造,现在得GFP能在可见光得波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。
定点突变技术得潜在应用领域很广,比如研究蛋白质相互作用位点得结构、改造酶得不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白得抗原性或者就是稳定性、活性、研究蛋白得晶体结构,以及药物研发、基因治疗等等方面.通过设计引物,并利用PCR将模板扩增出来,然后去掉模板,剩下来得就就是我们得PCR 产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就行了.三、引物设计原则引物设计得一般原则不再重复.突变引物设计得特殊原则:(1)通常引物长度为25~45 bp,我们建议引物长度为30~35 bp。
一般都就是以要突变得碱基为中心,加上两边得一段序列,两边长度至少为11—12 bp。
若两边引物太短了,很可能会造成突变实验失败,因为引物至少要11-12个bp才能与模板搭上,而这种突变PCR要求两边都能与引物搭上,所以两边最好各设至少12个bp,并且合成多一条反向互补得引物。
基因定点突变DNA实验技术方法要研究和检测基因定点突变,需要使用一系列的实验技术方法。
以下是几种常用的DNA实验技术方法:1.基因测序技术基因测序技术是研究基因组突变的关键方法之一、它可以将DNA分子按顺序解码,并确定单个核苷酸的序列。
经过多年的发展,现在有很多种基因测序技术可供选择,如Sanger测序、Illumina测序、PacBio测序和单分子DNA测序。
这些技术可以高效地测定基因组中各个位置的核苷酸序列,并揭示基因定点突变的存在。
2.聚合酶链式反应(PCR)PCR是一种用于扩增特定DNA片段的方法,可以在PCR反应过程中选择性地扩增感兴趣的基因片段。
对于基因定点突变的研究,PCR可以用来扩增包含突变位点的DNA片段,并通过测序分析来确定突变的类型。
3.引物延伸法引物延伸法是一种常用的检测单核苷酸多态性(SNP)和点突变的方法。
该方法使用引物和DNA聚合酶来识别特定位点,并从该位点延伸引物,以确定突变的存在与否。
引物延伸法可以用于快速、高效地检测多个位点的突变。
4. 限制性酶切酶(Restriction Enzyme Digestion)限制性酶切酶可以通过识别特定的DNA序列并在该序列周围切割DNA来检测和分析基因定点突变。
当突变中产生或消失限制性酶切位点时,可以通过酶切后的DNA片段的大小变化来检测突变。
5. DNA芯片技术(DNA Microarray)DNA芯片技术是一种高通量的基因分析技术,可以同时检测和比较大量的基因表达水平。
通过将DNA分子固定在芯片的表面并用荧光探针进行杂交反应,可以检测不同样品中基因定点突变的存在。
以上是几种常用的DNA实验技术方法,用于研究和检测基因定点突变。
随着技术的不断发展和创新,这些方法将进一步提高灵敏度和分辨率,为基因定点突变的研究提供更多的选择和可能性。
基因定点诱变的方法及原理基因定点诱变是指在特定位置引发基因突变的一种技术或方法。
通过基因定点诱变技术,可以精确地改变基因组中特定位置的碱基序列,从而研究或改变目标基因的功能。
目前常用的基因定点诱变方法主要有以下几种:1. CRISPR-Cas9系统:CRISPR-Cas9(Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9)是一种基于RNA-DNA 相互识别的靶向基因编辑技术。
该系统利用Cas9蛋白通过结合到特定的DNA 序列来导向编辑目标位置,而CRISPR RNA(crRNA)和互补序列的转录过程产生了指导RNA(sgRNA)。
CRISPR-Cas9系统可以通过设计合成特定的sgRNA来诱导Cas9蛋白与目标基因的DNA序列结合,并在目标位点引入双链断裂,通过自然修复过程来实现基因突变。
2. TALEN系统:TALEN(Transcription activator-like effector nuclease)是一种由TAL(Transcription activator-like)蛋白和核酸酶融合而成的基因编辑工具。
TAL蛋白可通过识别和结合特定的DNA序列来实现靶向基因编辑。
TALEN 系统利用设计合成的TAL蛋白与核酸酶的融合体结合到目标基因的DNA序列上,并通过酶活性诱导DNA的双链断裂,从而引发基因突变。
3. ZFN系统:ZFN(Zinc finger nuclease)是由锌指蛋白(Zinc Finger Protein)与核酸酶(nuclease)融合而成的一种基因编辑工具。
锌指蛋白能够识别和结合到特定的DNA序列上,而核酸酶则通过识别锌指蛋白与DNA结合后的底物序列引发DNA的切割。
ZFN系统利用设计合成的锌指蛋白与核酸酶的融合体结合到目标基因的DNA序列上,从而在特定的位置诱导DNA的双链断裂,进而引发基因突变。
大引物pcr进行定点突变的方法以大引物PCR进行定点突变的方法引言:PCR(聚合酶链式反应)是一种常用的分子生物学技术,可以通过扩增目标DNA序列来获得足够的DNA量。
在基因工程和分子生物学研究中,需要对目标基因进行定点突变,以研究其功能或改变其特性。
大引物PCR是一种常用的方法,可以实现定点突变。
一、大引物PCR的原理大引物PCR是一种基于PCR技术的方法,通过引入带有突变碱基的引物,使扩增产物发生定点突变。
其原理如下:1. 设计引物:根据目标基因的序列,设计一对引物,其中一个引物带有突变碱基,用于引导定点突变。
2. 反应体系:将目标DNA模板、引物、dNTPs(脱氧核苷酸三磷酸盐)、聚合酶和缓冲液混合,构建PCR反应体系。
3. PCR扩增:通过PCR反应,将目标基因的DNA序列扩增出来。
4. 大引物PCR特点:大引物PCR与常规PCR的区别在于,引物的长度较长,通常为30-50个碱基对,以确保引物与目标DNA序列的准确配对并引导定点突变。
二、大引物PCR的步骤大引物PCR通常包括以下步骤:1. 目标基因的DNA提取:从细胞或组织中提取目标基因的DNA。
2. 引物设计:根据目标基因的序列,设计一对引物,其中一个引物带有突变碱基。
3. PCR反应体系的准备:将目标DNA模板、引物、dNTPs、聚合酶和缓冲液按照一定比例混合,构建PCR反应体系。
4. PCR扩增条件的设置:根据引物的特性和目标基因的长度,设置PCR的温度循环条件,包括变性、退火和延伸等步骤。
5. PCR反应:将PCR反应体系放入热循环仪中进行PCR扩增,通常进行30-40个循环。
6. PCR产物的分离:通过凝胶电泳等方法,将PCR扩增产物与模板DNA分离。
7. 定点突变的验证:对PCR扩增产物进行测序,验证是否实现了定点突变。
三、大引物PCR的优势和应用1. 高效性:大引物PCR可以快速、高效地实现定点突变,无需进行繁琐的基因克隆。
基因定点突变全攻略基因定点突变全攻略⼀、定点突变的⽬的把⽬的基因上⾯的⼀个碱基换成另外⼀个碱基。
⼆、定点突变的原理定点突变是指通过聚合酶链式反应(PCR)等⽅法向⽬的DNA⽚段(可以是基因组,也可以是质粒)中引⼊所需变化(通常是表征有利⽅向的变化),包括碱基的添加、删除、点突变等。
定点突变能迅速、⾼效的提⾼DNA所表达的⽬的蛋⽩的性状及表征,是基因研究⼯作中⼀种⾮常有⽤的⼿段。
体外定点突变技术是研究蛋⽩质结构和功能之间的复杂关系的有⼒⼯具,也是实验室中改造/优化基因常⽤的⼿段。
蛋⽩质的结构决定其功能,⼆者之间的关系是蛋⽩质组研究的重点之⼀。
对某个已知基因的特定碱基进⾏定点改变、缺失或者插⼊,可以改变对应的氨基酸序列和蛋⽩质结构,对突变基因的表达产物进⾏研究有助于⼈类了解蛋⽩质结构和功能的关系,探讨蛋⽩质的结构/结构域。
⽽利⽤定点突变技术改造基因:⽐如野⽣型的绿⾊荧光蛋⽩(wtGFP)是在紫外光激发下能够发出微弱的绿⾊荧光,经过对其发光结构域的特定氨基酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),⽽且发光强度⽐原来强上百倍,甚⾄还出现了黄⾊荧光蛋⽩,蓝⾊荧光蛋⽩等等。
定点突变技术的潜在应⽤领域很⼴,⽐如研究蛋⽩质相互作⽤位点的结构、改造酶的不同活性或者动⼒学特性,改造启动⼦或者DNA作⽤元件,提⾼蛋⽩的抗原性或者是稳定性、活性、研究蛋⽩的晶体结构,以及药物研发、基因治疗等等⽅⾯。
通过设计引物,并利⽤PCR将模板扩增出来,然后去掉模板,剩下来的就是我们的PCR 产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就⾏了。
三、引物设计原则引物设计的⼀般原则不再重复。
突变引物设计的特殊原则:(1)通常引物长度为25~45 bp,我们建议引物长度为30~35 bp。
⼀般都是以要突变的碱基为中⼼,加上两边的⼀段序列,两边长度⾄少为11-12 bp。
若两边引物太短了,很可能会造成突变实验失败,因为引物⾄少要11-12个bp才能与模板搭上,⽽这种突变PCR要求两边都能与引物搭上,所以两边最好各设⾄少12个bp,并且合成多⼀条反向互补的引物。