数值分析(01) 数值计算与误差分析
- 格式:ppt
- 大小:2.74 MB
- 文档页数:70
1. 计算11n x nI ex e dx -=⎰(n=0,1,2,……)并估计误差。
由分部积分可得计算n I 的递推公式111101,1,2,e 1.nn x I nI n I e dx e ---=-=⎧⎪⎨==-⎪⎩⎰……. (1) 若计算出0I ,代入(1)式,可逐次求出 12,,I I …的值。
要算出0I 就要先算出1e -,若用泰勒多项式展开部分和21(1)(1)1(1),2!!ke k ---≈+-+++…并取k=7,用4位小数计算,则得10.3679e -≈,截断误差14711|0.3679|108!4R e --=-≤<⨯.计算过程中小数点后第5位的数字按四舍五入原则舍入,由此产生的舍入误差这里先不讨论。
当初值取为000.6321I I ≈= 时,用(1)式递推的计算公式为 010.6321A 1nn I I nI -⎧=⎨=-⎩ (),n=1,2,…。
计算结果见表1的n I 列。
用0I 近似0I 产生的误差000E I I =- 就是初值误差,它对后面计算结果是有影响的.表1 计算结果从表1中看到8I 出现负值,这与一切0n I >相矛盾。
实际上,由积分估值得111110001011(im )(max)11x n n n x x e e m e x dx I e x dx n n ---≤≤≤≤=<<=++⎰⎰ (2) 因此,当n 较大时,用n I 近似n I 显然是不正确的。
这里计算公式与每步计算都是正确的,那么是什么原因合计算结果出现错误呢?主要就是初值0I 有误差000E I I =- ,由此引起以后各步计算的误差n n nE I I =- 满足关系1,1,2,n n E nE n -=-=….由此容易推得0(1)!n n E n E =-,这说明0I 有误差0E ,则n I 就是0E 的n!倍误差。
例如,n=8,若401||102E -=⨯,则80||8!||2E E =⨯>。
数值分析实验误差分析一、引言数值分析是研究用数值方法处理数学问题的学科。
在数值计算中,由于测量误差、近似误差、截断误差和舍入误差等因素的影响,计算的结果与实际值可能存在一定程度的误差。
因此,在进行数值分析实验时,正确评估误差是非常重要的。
本文将从误差类型、误差分析方法等方面进行详细介绍。
二、误差类型1.测量误差。
由于测量仪器的制造、使用环境等因素的影响,测量结果与实际值之间存在偏差,这就是测量误差。
常见的测量误差有系统误差和随机误差。
其中,系统误差是由测量仪器本身的固有误差造成的偏差,随机误差则是由于测量仪器使用条件的不同而产生的偏差。
2.近似误差。
由于迫于计算机存储空间和运算精度的限制,数值计算中通常采用有限的、近似的算法来求解问题。
因此,近似误差是计算方法本身的误差所引起的。
3.截断误差。
因为在有限步数之内求解无限级数或积分等问题是不可能的,所以在实际计算中只能取一定的计算级数或增量来作为代替。
这样,在运算的过程中,我们总是保留最后一位是四舍五入到一定的位数。
这样,由于省略了无限级数的其余项,计算结果与实际值之间产生的误差就是截断误差。
4.舍入误差。
计算机表示数字的位数是有限的,当我们将一个实数舍入到有限的位数时,就会导致计算结果与实际值之间的差距,这就是舍入误差。
三、误差分析方法误差分析是数值分析实验中最基本的计算过程之一,而误差分析所依据的便是数学中的数值分析的基本原理。
对于数值分析实验中所产生的误差而言,目前主要有以下几种误差分析方法:维恩积分估计法、泰勒展开法、拉格朗日插值法等。
1.维恩积分估计法。
利用维恩积分估计法,可以粗略地估计出误差大小的上下限。
该方法的基本思想是:先根据计算结果求出解析解,然后在得到的解析解处求出其导数或高阶导数,再根据误差项的表达式,得到误差估计表达式,从而计算误差的上下界。
2.泰勒展开法。
利用泰勒展开法,可以把计算值的误差展开成某一阶导数之差的形式。
通过泰勒展开公式对计算结果做二阶近似展开,然后把相应的二阶导数用实际值代替即可。
数值分析基础数值分析是一门研究利用计算机进行数值计算的学科,它涉及到数学、计算机科学和工程学等多个领域。
数值分析基础是数值计算领域最基本的理论和方法,为实现高精度、高效率的数值计算提供了重要的基础。
一、数值分析的概念数值分析是通过数值方法解决数学问题的过程。
它的基本思想是将连续的数学问题转化为离散的数值问题,并利用计算机进行求解。
数值分析的应用范围非常广泛,包括线性代数方程组的求解、非线性方程求根、插值与逼近、数值微积分、常微分方程的初值问题和边值问题的数值解等。
二、数值计算的误差分析在数值分析中,误差分析是非常重要的一环。
数值计算过程中产生的误差可以分为截断误差和舍入误差。
截断误差是由于在离散化和近似计算中引入的近似误差,而舍入误差是由于计算机在表示实数时的有限精度引起的。
准确估计和控制误差是数值计算的核心问题之一。
三、常用的数值计算方法1. 插值与逼近方法:插值是在给定一组数据点的情况下,通过构造一个函数来近似这组数据点之间未知函数值的方法。
常用的插值方法有拉格朗日插值和牛顿插值。
逼近是通过在给定函数空间中寻找一个尽可能接近原函数的近似函数的方法,常见的逼近方法有最小二乘逼近和Chebyshev逼近。
2. 数值积分方法:数值积分是计算定积分的近似值的方法。
常见的数值积分方法有梯形法则、辛普森法则和复合求积法。
3. 数值微分方法:数值微分是通过差商逼近导数的计算方法。
常见的数值微分方法有中心差商、前向差商和后向差商。
4. 数值求解线性方程组的方法:线性方程组求解是数值计算中的一个重要问题。
常用的求解方法有直接法和迭代法。
5. 常微分方程数值解法:常微分方程数值解法是通过数值方法求解微分方程的方法。
常用的数值解法有欧拉法、龙格-库塔法和变步长方法等。
四、数值计算的应用领域数值分析在各个学科领域都有广泛的应用。
在物理学中,数值分析被用于求解天体运动、弹道问题等。
在工程学中,数值分析被用于优化设计、结构力学分析等。
数值分析总复习提纲数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概 括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算 与数值分析三个基本内容。
在实际的分析计算中,所采用的方法也无非是递推 与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。
一、误差分析与算法分析误差分析与算法设计包括这样几个方面: (一) 误差计算1截断误差的计算绝对误差、相对误 差和误差限的计算直接利用公式即可 基本的计算公式是:① e(x)= x * — x A x = dx② e r (x)超竝他x xx③ e( f (x)) f (x)dx f (x)e(x) ④ e r (f (x)) d(lnf (x))e( f *, X 2)) f x 1 (为,X 2)dx 1 f x 2(X 1, X 2)dx 2 f x 1 (为,x ?)e(xj f x 2 区,x ? )e(x 2)⑥(f(x 1,X 2))(f(x1,x2))f (X 1,X 2)截断误差根据泰勒余项进行计算。
E)/ \(x) n 1 基本的冋题是(n 1)!例1. 1 :计算e 的近似值,使其误差不超过10解:令 f(x)=e (0 1),已知&求n 。
e x 1 xx 2 x"2 当x=1时, ,而 f (k)(x)=e x ,f n x n! 1(n故 R n (1)L 2! n!3。
(n 1)! (k) (0)=e 0=1。
xen 1x (0 1)! 1 e-6。
由麦克劳林公式,可知1) (0 1)(n 1)!当n = 9时,R(1)v10 -6,符合要求。
此时, e ~ 2.718 285。
2、绝对误差、相对误差及误差限计算注意:求和差积商或函数的相对误差和相对误差限一般不是根据 误差的关系 而是直接从定义计算,即求出绝对误差或绝对误差限,求出近似值,直接套用定 义式e r (x)葩或—,xx这样计算简单。
数值分析中的误差分析方法数值分析是一门研究离散数据逼近和连续函数求解的学科,广泛应用于科学、工程和金融等领域。
在数值计算过程中,误差是不可避免的,因此准确评估和分析误差是至关重要的。
本文将介绍数值分析中常用的误差分析方法,以帮助读者更好地理解误差来源和影响,从而提高数值计算的准确性和可靠性。
一、绝对误差和相对误差绝对误差是指数值计算结果与真实值之间的差异。
在数值分析中,我们往往无法得知真实值,因此无法直接计算绝对误差。
相对误差则是相对于近似值的误差,它可以更好地反映计算结果的准确性。
二、截断误差截断误差是由于采用有限的计算步骤或取舍了一些无限级数的项而引入的误差。
在数值计算中,我们通常使用近似方法,如级数展开和数值积分等。
由于截断误差的存在,我们得到的结果与真实值之间会有一定的差距。
截断误差的大小取决于所采用的数值方法和步长,可以通过逐步减小步长来减小截断误差。
三、舍入误差舍入误差是由于对无限精度数进行有限舍入导致的误差。
计算机中的数值表示是有限的,而真实数值通常是无限的。
因此,在计算机中进行数值计算时,会存在一定程度的舍入误差。
舍入误差可以通过采用更高精度的数据类型或者使用舍入误差分析技术来减小。
四、传播误差传播误差是由于输入数据的不确定性或测量误差在数值计算过程中扩散而引入的误差。
在实际问题中,输入数据通常带有不确定性,例如测量误差或近似值。
这些不确定性会随着计算的进行而传播,影响到计算结果的准确性。
传播误差需要通过敏感性分析等方法来进行评估和控制。
五、误差估计误差估计是通过数值分析方法来评估近似解与真实解之间的误差。
常用的误差估计方法包括残差估计、收敛性分析和算例分析等。
残差估计法通过计算数值解与原方程的残差来估计误差的大小。
收敛性分析则通过逐步减小步长和比较不同精度下的数值解来判断数值方法是否收敛。
算例分析是通过计算实际问题的已知解或近似解来评估数值方法的误差。
六、误差限制和误差控制误差限制和误差控制是保证数值计算结果准确性和可靠性的重要手段。