数值分析(01) 数值计算与误差分析
- 格式:ppt
- 大小:2.74 MB
- 文档页数:70
1. 计算11n x nI ex e dx -=⎰(n=0,1,2,……)并估计误差。
由分部积分可得计算n I 的递推公式111101,1,2,e 1.nn x I nI n I e dx e ---=-=⎧⎪⎨==-⎪⎩⎰……. (1) 若计算出0I ,代入(1)式,可逐次求出 12,,I I …的值。
要算出0I 就要先算出1e -,若用泰勒多项式展开部分和21(1)(1)1(1),2!!ke k ---≈+-+++…并取k=7,用4位小数计算,则得10.3679e -≈,截断误差14711|0.3679|108!4R e --=-≤<⨯.计算过程中小数点后第5位的数字按四舍五入原则舍入,由此产生的舍入误差这里先不讨论。
当初值取为000.6321I I ≈= 时,用(1)式递推的计算公式为 010.6321A 1nn I I nI -⎧=⎨=-⎩ (),n=1,2,…。
计算结果见表1的n I 列。
用0I 近似0I 产生的误差000E I I =- 就是初值误差,它对后面计算结果是有影响的.表1 计算结果从表1中看到8I 出现负值,这与一切0n I >相矛盾。
实际上,由积分估值得111110001011(im )(max)11x n n n x x e e m e x dx I e x dx n n ---≤≤≤≤=<<=++⎰⎰ (2) 因此,当n 较大时,用n I 近似n I 显然是不正确的。
这里计算公式与每步计算都是正确的,那么是什么原因合计算结果出现错误呢?主要就是初值0I 有误差000E I I =- ,由此引起以后各步计算的误差n n nE I I =- 满足关系1,1,2,n n E nE n -=-=….由此容易推得0(1)!n n E n E =-,这说明0I 有误差0E ,则n I 就是0E 的n!倍误差。
例如,n=8,若401||102E -=⨯,则80||8!||2E E =⨯>。
数值分析实验误差分析一、引言数值分析是研究用数值方法处理数学问题的学科。
在数值计算中,由于测量误差、近似误差、截断误差和舍入误差等因素的影响,计算的结果与实际值可能存在一定程度的误差。
因此,在进行数值分析实验时,正确评估误差是非常重要的。
本文将从误差类型、误差分析方法等方面进行详细介绍。
二、误差类型1.测量误差。
由于测量仪器的制造、使用环境等因素的影响,测量结果与实际值之间存在偏差,这就是测量误差。
常见的测量误差有系统误差和随机误差。
其中,系统误差是由测量仪器本身的固有误差造成的偏差,随机误差则是由于测量仪器使用条件的不同而产生的偏差。
2.近似误差。
由于迫于计算机存储空间和运算精度的限制,数值计算中通常采用有限的、近似的算法来求解问题。
因此,近似误差是计算方法本身的误差所引起的。
3.截断误差。
因为在有限步数之内求解无限级数或积分等问题是不可能的,所以在实际计算中只能取一定的计算级数或增量来作为代替。
这样,在运算的过程中,我们总是保留最后一位是四舍五入到一定的位数。
这样,由于省略了无限级数的其余项,计算结果与实际值之间产生的误差就是截断误差。
4.舍入误差。
计算机表示数字的位数是有限的,当我们将一个实数舍入到有限的位数时,就会导致计算结果与实际值之间的差距,这就是舍入误差。
三、误差分析方法误差分析是数值分析实验中最基本的计算过程之一,而误差分析所依据的便是数学中的数值分析的基本原理。
对于数值分析实验中所产生的误差而言,目前主要有以下几种误差分析方法:维恩积分估计法、泰勒展开法、拉格朗日插值法等。
1.维恩积分估计法。
利用维恩积分估计法,可以粗略地估计出误差大小的上下限。
该方法的基本思想是:先根据计算结果求出解析解,然后在得到的解析解处求出其导数或高阶导数,再根据误差项的表达式,得到误差估计表达式,从而计算误差的上下界。
2.泰勒展开法。
利用泰勒展开法,可以把计算值的误差展开成某一阶导数之差的形式。
通过泰勒展开公式对计算结果做二阶近似展开,然后把相应的二阶导数用实际值代替即可。