数值分析第一章实验 误差分析
- 格式:doc
- 大小:152.00 KB
- 文档页数:3
第一章: 第一章:误差主要内容• 误差的来源与分类 误差的来源与分类 • 误差与有效数字 • 在近似计算中应注意的几个问题1. 来源与分类 ( Source & Classification )• • • •模型误差 参数误差(观测误差) 参数误差(观测误差) 方法误差(截断误差) 方法误差(截断误差) 舍入误差1.1 模型误差 (Modeling Error)用计算机解决实际问题时, 首先要建立数学 用计算机解决实际问题时 , 首先要建立 数学 模型, 各种实际问题是十分复杂的, 模型 , 各种实际问题是十分复杂的 , 而数学 模型是对被描述的实际问题进行抽象 抽象、 模型是对被描述的实际问题进行 抽象 、 简化 而得到的, 往往忽略 了一些次要因素 忽略了一些 次要因素, 而得到的 , 往往 忽略 了一些 次要因素 , 因而 近似的 是 近似 的 , 我们把数学模型与实际问题之间 出现的这种误差称为模型误差 模型误差。
出现的这种误差称为 模型误差 。
如自由落体 公式1 2 s = gt 2忽略了空气阻力。
忽略了空气阻力。
参数误差(观测误差, 1.2 参数误差(观测误差,Measurement Error) 数学模型中的物理参数的具体数值, 数学模型中的物理参数的具体数值,一般通过 实验测定或观测得到的,因此与真值之间也有 实验测定或观测得到的, 得到的 误差,这种误差称为参数误差 观测误差。
参数误差或 误差,这种误差称为参数误差或观测误差。
例如前例中的重力加速度g=9.8 米 例如前例中的重力加速度 g=9.8米 / 秒 , 这 g=9.8 个数值是由多次实验而得到的结果实际的值 有一定的误差,这时g-9.8就是参数误差。
g-9.8就是参数误差 有一定的误差,这时g-9.8就是参数误差。
1.3 方法误差 (截断误差 Truncation Error)在数学模型( 包括参数值) 确定以后, 在数学模型 ( 包括参数值 ) 确定以后 , 就要考虑 选用某种数值方法具体进行计算, 选用某种数值方法具体进行计算 , 许多数值方法 都是近似方法, 都是近似方法 , 故求出的结果与准确值之间是有 误 差 的 , 该 误 差称 为 截断 误 差 或 方 法 误 差 。
第1章误差分析利用计算机进行数值计算几乎全都是近似计算:计算机所能表示的数的个数是有限的,我们需要用到的数的个数是无限的,所以在绝大多数情况下,计算机不可能进行绝对精确的计算。
定义:设x *为某个量的真值,x为x *的近似值,称x *- x为近似值x的误差,通常记为e(x),以表明它是与x有关的量。
与误差作斗争是时计算方法研究的永恒的主体,由于时间和经验的关系,我们仅对这方面的只是做一个最基本的介绍。
1.1 误差的来源误差的来源是多方面的,但主要来源为:描述误差,观测误差,截断误差和舍入误差。
1描述误差为了便于数学分析和数值计算,人们对实际问题的数学描述通常只反映出主要因素之间的数量关系,而忽略次要因素的作用,由此产生的误差称为描述误差。
对实际问题进行数学描述通常称为是建立数学模型,所以描述误差也称为是模型误差。
2观测误差描述实际问题或实际系统的数学模型中的某些参数往往是通过实验观测得到的。
由试验得到的数据与实际数据之间的误差称为观测误差。
比如我们用仪表测量电压、电流、压力、温度时,指针通常会落在两个刻度之间,读数的最后一位只能是估计值,从而也产生了观测误差。
3.舍入误差几乎所有的计算工具,当然也包括电子计算机,都只能用一定数位的小数来近似地表示数位较多或无限的小数,由此产生的误差称为舍入误差。
4.截断误差假如真值x*为近似值系列{x n}的极限,由于计算机只能执行有限步的计算过程,所以我们只能选取某个x N作为x*的近似值,由此产生的误差称为截断误差。
我们可以通过函数的泰勒展式来理解截断误差:设f(x)可以在x=x0处展开为泰勒级数,记f N(x)为前N+1项的和,R N(x)为余项,如果用f N(x)近似表示f(x),则R N(x)就是截断误差。
提示:在我们的课程中,重点是考虑尽可能减小截断误差,尽可能消除舍入误差的副作用。
1.2 误差基本概念1.绝对误差与相对误差定义:设x*为某个量的真值,x为x*的近似值,我们称|x*- x|为近似值x的绝对误差;称|x *- x|/|x*|为近似值x的相对误差。
计算方法-1 -第一章 误差分析的基本概念§ 1误差的来源1. 误差概念:精确值与近似值之差称为误差,也叫绝对误差。
2. 产生误差的主要原因① 模型误差:在解决实际问题时,在一定条件下抓住主要因素将现实系统理想化的数学描述称为实 际问题的数学模型,这种数学描述常常是近似的,数学模型与实际系统之间存在误差,这种误差称为模 型误差。
② 观测误差:数学模型中往往含有一些由观测得到的物理量(如温度、电阻、长度)或由物理量估 算出的模型参数,这些观测物理量或模型参数常常与实际数据存在误差。
这种由观察产生的误差称为观 测误差。
③ 截断误差:数值计算中用有限运算近似代替无穷过程产生的误差。
例如计算一个无穷次可微函数 的函数值时,理论上只要能算出这个函数的泰勒级数值即可,但是实际工程上仅用泰勒级数中前面有限 项来近似计算函数值,而舍去高阶无穷小量。
这个被舍的高阶无穷小量正是截断误差。
④ 舍入误差:计算中按四舍五入进行舍入而引起的误差或因计算机字长有限,数据在内存中存放时 进行了舍入而引起的误差。
3. 举例说明例1设一根铝棒在温度t 时的实际长度为L t ,在t=0 C 时的实际长度为 L o ,用i t 来表示铝棒在温度为t 时的长度计算值,并建立一个数学模型: I tL °(1「.t ),其中a 是由实验观察得到的常数:-二(0.0000238 ± 0.0000001 ) 1/ C,称L t —I t 为模型误差,0.0000001/ C 是a 的观测误差。
这个问题中模型 误差产生的原因是:实际上 L t 与t 2有微弱关系,也就是说模型未能完全反映物理过程。
为了计算近似值,可取前面有限项计算•如取前面五项计算,计算过程中与计算结果都取五位小数得e ~1+1 + 1/2+1/6+1/24疋2.7083, e 取五位小数时的准确值为~ =2.71828,于是截断误差为:□0' —:2.71828 -2.7083 = 0.00995 n总n !这表明:只要在计算中采用了有限步运算近似代替无限步运算的方法,截断误差就一定存在。
数值分析实验误差分析一、引言数值分析是研究用数值方法处理数学问题的学科。
在数值计算中,由于测量误差、近似误差、截断误差和舍入误差等因素的影响,计算的结果与实际值可能存在一定程度的误差。
因此,在进行数值分析实验时,正确评估误差是非常重要的。
本文将从误差类型、误差分析方法等方面进行详细介绍。
二、误差类型1.测量误差。
由于测量仪器的制造、使用环境等因素的影响,测量结果与实际值之间存在偏差,这就是测量误差。
常见的测量误差有系统误差和随机误差。
其中,系统误差是由测量仪器本身的固有误差造成的偏差,随机误差则是由于测量仪器使用条件的不同而产生的偏差。
2.近似误差。
由于迫于计算机存储空间和运算精度的限制,数值计算中通常采用有限的、近似的算法来求解问题。
因此,近似误差是计算方法本身的误差所引起的。
3.截断误差。
因为在有限步数之内求解无限级数或积分等问题是不可能的,所以在实际计算中只能取一定的计算级数或增量来作为代替。
这样,在运算的过程中,我们总是保留最后一位是四舍五入到一定的位数。
这样,由于省略了无限级数的其余项,计算结果与实际值之间产生的误差就是截断误差。
4.舍入误差。
计算机表示数字的位数是有限的,当我们将一个实数舍入到有限的位数时,就会导致计算结果与实际值之间的差距,这就是舍入误差。
三、误差分析方法误差分析是数值分析实验中最基本的计算过程之一,而误差分析所依据的便是数学中的数值分析的基本原理。
对于数值分析实验中所产生的误差而言,目前主要有以下几种误差分析方法:维恩积分估计法、泰勒展开法、拉格朗日插值法等。
1.维恩积分估计法。
利用维恩积分估计法,可以粗略地估计出误差大小的上下限。
该方法的基本思想是:先根据计算结果求出解析解,然后在得到的解析解处求出其导数或高阶导数,再根据误差项的表达式,得到误差估计表达式,从而计算误差的上下界。
2.泰勒展开法。
利用泰勒展开法,可以把计算值的误差展开成某一阶导数之差的形式。
通过泰勒展开公式对计算结果做二阶近似展开,然后把相应的二阶导数用实际值代替即可。
1. 计算1
1
n x n
I e
x e dx -=⎰
(n=0,1,2,……)并估计误差。
由分部积分可得计算n I 的递推公式
1111
01,1,2,e 1.n
n x I nI n I e dx e ---=-=⎧⎪⎨==-⎪⎩⎰……. (1) 若计算出0I ,代入(1)式,可逐次求出 1
2,,I I …
的值。
要
算出0I 就要先算出1e -,若用泰勒多项式展开部分和
21
(1)(1)1(1),2!!
k
e k ---≈+-+++
…
并取k=7,用4位小数计算,则得10.3679e -≈,截断误差
14711
|0.3679|108!4
R e --=-≤
<⨯.计算过程中小数点后第5位的数字按四舍五入原则舍入,由此产生的舍入误差这里先不讨论。
当初值取为
00
0.6321I I ≈= 时,用(1)式递推的计算公式为 0
10.6321A 1n
n I I nI -⎧=⎨=-⎩ (),n=1,2,…。
计算结果见表1的n I 列。
用0I 近似0I 产生的误差000
E I I =- 就是初值误差,它对后面计算结果是有影响的.
表1 计算结果
从表1中看到8I 出现负值,这与一切0n I >相矛盾。
实际上,由积分估值得
111110001011
(im )(max)11
x n n n x x e e m e x dx I e x dx n n ---≤≤≤≤=<<=++⎰⎰ (2) 因此,当n 较大时,用n I 近似n I 显然是不正确的。
这里计算公式与每步计算都是正确的,那么是什么原因合计算结果出现错误呢?主要就
是初值0I 有误差000E I I =- ,由此引起以后各步计算的误差n n n
E I I =- 满足关系
1,1,2,n n E nE n -=-=….
由此容易推得
0(1)!n n E n E =-,
这说明0I 有误差0E ,则n I 就是0E 的n!倍误差。
例如,n=8,若
4
01||102
E -=
⨯,则80||8!||2E E =⨯>。
这就说明8I 完全不能近似8I 了。
它表明计算公式(A )是数值不稳定的。
我们现在换一种计算方案。
由(2)式取n=9,得
1911010
e I -<<, 我们粗略取1
*9911()0.068421010
e I I -≈+==,然后将公式(1)倒过来算,即
由*9I 算出*8I ,*7I ,…,*
0I ,公式为
*
9**
10.0684()1(1),98n n I B I I n n -⎧=⎪
=⎨=-=⎪⎩
,
,…,1; 计算结果见表1的*n I 列。
我们发现*
0I 与0I 的误差不超过410-。
记
**
n n n
E I I =-,则**01||||!
n E E n =,*0E 比*
n E 缩小了n!倍,因此,尽管*9E 较大,但由于误差逐步缩小,故可用*
n I 近似n I 。
反之,当用方案(A )计算
时,尽管初值0I 相当准确,由于误差传播是逐步扩大的,因而计算结果不可靠。
此例说明,数值不稳定的算法是不能使用的。