第九章 振动详解
- 格式:ppt
- 大小:1.97 MB
- 文档页数:68
高二物理简谐振动 振幅、周期、频率 知识精讲 人教版一. 本周教学内容:第九章 第一节 简谐振动 第二节 振幅、周期、频率二. 知识要点:知道什么是简谐运动以与物体做简谐运动回复力特点,理解位移和回复力的概念,理解简谐运动在一次全振动中位移、回复力、加速度和速度的变化情况。
理解弹簧振子概念与实际物体运动抽象为弹簧振子的条件。
理解回复力kx F -=的意义。
知道振幅、周期、频率是描述振动整体特征的物理量,知道它们的物理意义,理解振幅和位移的区别,理解周期和频率的关系,知道什么是固有周期和固有频率。
三. 重点、难点解析: 1. 机械振动:物体〔或物体的一局部〕在某一位置附近做往复运动,叫做机械振动,简称振动。
物体受力满足2条才能做振动①是每当物体离开振动的中心位置就受到回复力作用力;②是运动中其它阻力足够小。
描述振动的名词。
① 平衡位置:物体振动停止时的位置也就是静止平衡的位置。
② 回复力:振动物体离开平衡位置就受到一个指向平衡位置的力,叫回复力。
回复力是力的作用效果命名的。
它可以是一个力,也可以是某个力的分力或者几个力的合力。
只要物体离开平衡位置回复力就不为零,方向指向平衡位置。
③ 振动位移:以平衡位置为原点〔起点〕的位移。
数值为从平衡到振动物体达到的位置的直线距离方向由平衡位置指向物体位置。
④ 一次全振动:物体以一样的速度经某位置,又以一样的速度回到同一位置,叫完成一次全振动。
2. 简谐振动:① 弹簧振子:一轻弹簧连接一质点,质点运动时不受摩擦阻力。
这样的装置叫弹簧振子。
弹簧振子沿水平方向运动过程分析,取水平坐标轴,平衡位置为原点。
弹簧处原长状③ 回复力:kx F -=。
④ 简谐运动的定义:质点在跟偏离平衡位置的位移成正比,并总指向平衡位置的回复力作用下的振动叫简谐运动。
⑤ 简谐运动的动力学特征:kx F -=。
⑥ 运动学特征:x mka -=是变加速运动。
⑦ 整体特征与运动学量变化规律:位移、加速度、速度都按周期性变化。
高二物理第九章机械振动第一、二、三节人教版【本讲教育信息】一. 教学内容:第九章 机械振动第一节 简谐振动 第二节振幅、周期和频率 第三节 简谐运动的图象二. 知识要点: 〔一〕简谐振动1. 机械振动的定义:物体在某一中心位置两侧所做的往复运动。
2. 回复力的概念:使物体回到平衡位置的力。
注意:回复力是根据力的效果来命名的,可以是各种性质的力,也可以是几个力的合力或某个力的分力。
3. 简谐运动概念:物体在跟位移大小成正比,并且总是指向平衡位置的力作用下的振动。
特征是:kx F -=;m kx a /-=。
〔特例:弹簧振子〕4. 简谐运动中位移、回复力、速度、加速度的变化规律。
〔参看课本〕〔1〕振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置、大小为这两位置间的直线距离,在两个“端点〞最大,在平衡位置为零。
〔2〕加速度a 的变化与回F 的变化是一致的,在两个“端点〞最大,在平衡位置为零,方向总是指向平衡位置。
〔3〕速度大小v 与加速度a 的变化恰好相反,在两个“端点〞为零,在平衡位置最大。
除两个“端点〞外任一个位置的速度方向都有两种可能。
〔二〕振幅、周期、频率1. 振幅A 的概念:振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
2. 周期和频率的概念:振动的物体完成一次全振动所需的时间称为振动周期,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹。
周期和频率都是描述振动快慢的物理量。
注意:全振动是指物体先后两次运动状态........〔位移和速度〕完全一样....所经历的过程。
振动物体在一个全振动过程通过的路程等于4个振幅。
3. 周期和频率的关系:fT 1=4. 固有频率和固有周期:物体的振动频率,是由振动物体本身的性质决定的,与振幅的大小无关,所以叫固有频率。
振动周期也叫固有周期。
〔三〕简谐运动的图象 1. 简谐运动的图象:〔1〕作法:以横轴表示时间,纵轴表示位移,根据实际数据取单位,定标度,描点。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
第九章 弹性体振动的准确解9.1 引言在引论中我们曾经提到,实际的振动系统都是弹性体系统。
弹性体具有分布的物理参数(质量,阻尼,刚度)。
它可以看做由无数个质点借弹性联系组成的连续系统,其中每个质点都具有独立的自由度。
所以,一个弹性体的空间位置需要用无数个点的独立空间坐标来确定。
也就是说,弹性体具有无限多个自由度。
在数学上,弹性体的运动需要用偏微分方程来描述。
前面我们论述的多自由度系统只是弹性体的近似力学模型。
本章讨论理想弹性体的振动,所谓理想弹性体.....是指满足以下三个条件的连续系统模型:(1)匀质分布;(2)各向同性;(3)服从虎克定律。
通过对一些简单形状的弹性体的振动分析,着重说明弹性体振动的特点,弄清它与多自由度系统振动的共同点与不同点。
我们将看到,任何一个弹性体具有无限多个固有频率以及无限多个与之相应的主振型;而且这些主振型之间也存在着关于质量与刚度的正交性;弹性体的自由振动也可以表示为各个主振动的线性叠加;而且对于弹性体的动响应分析,主振型叠加法仍然是适用的。
所以说,弹性体振动与多自由度系统的振动,二者有着一系列共同的特性,这就是它们的共性。
而二者的差别仅在于数量上弹性体有无限多个固有频率与主振型,而多自由度系统只有有限多个。
我们还将看到,对于一些简单情形下的弹性体振动问题,可以很方便地找到它们的准确解。
尽管实际问题往往是复杂的,很少可以归结为这些简单情形;但是了解这些简单情形下准确解的特征,对于处理复杂问题是有帮助的。
为了避免用到弹性力学的知识,而仅以材料力学作为基础,我们将限于讨论一维弹性体(梁,轴,杆等)。
9.2弦的振动设有理想柔软的细弦张紧于两个固定支点之间,张力为T ,跨长为l ,弦单位长度的质量为ρ。
两支点连线方向取为x 轴(向右为正),与x 轴垂直的方向取为y 轴(向上为正),如图9.2-1(a )。
设弦的振动发生在xoy 平面内,弦的运动可表示为y=y (x,t ).还假设弦的振动幅度是微小的,即 y 与xy∂∂均为小量;在这假设下弦的张力T 可近似地看做常量。