第九章振动学基础
- 格式:ppt
- 大小:698.50 KB
- 文档页数:26
第9章振动学基础习题9.1 质量为10×10-3kg的小球与轻弹簧组成的系统,按x=0.1cos(8πt+2π/3)(SI)的规律振动,求:(1)振动的圆频率、周期、振幅、初相以及速度与加速度的最大值;(2)最大回复力、振动能量、平均动能和平均势能;(3)t=1、2、5、10s等各时刻的相位;(4)分别画出振动的x-t图线,v-t图线和a-t图线;(5)画出这些振动的转动矢量图示,并在图中指明t=1、2、5、10s时矢量的位置。
9.2 一个弹簧振子m=0.5kg,k=50N/m,振幅A=0.04m,求:(1)振动的圆频率,最大速度和最大加速度;(2)当振子对平衡位置的位移为x=0.02m时的瞬时速度、加速度和回复力;(3)以速度具有正的最大值时为计时起点,写出振动的表达式。
9.3 一质点在x=0附近沿x轴作简谐振动。
在t=0时位置为x=0.37cm,速度为零,振动频率为0.25Hz。
试求:(1)周期、圆频率、振幅;(2)在时刻t的位置和速度;(3)最大速度和最大加速度的值;(4)在t=3.0s时的位置和速率。
9.4 作简谐振动的小球,速度最大值为v m=3cm/s,振幅A=2cm,若从速度为正的最大值时开始计算时间,求:(1)振动的周期;(2)加速度的最大值;(3)振动表达式。
9.5 如图,两轻弹簧与小球串联在一直线上,将两弹簧拉长后系在固定点A、B之间,整个系统放在水平面上。
设弹簧的原长为l1、l2,倔强系数为k1、k1,A、B间距离为L,小球的质量为m。
(1)试确定小球的平衡位置。
(2)使小球沿弹簧长度的方向作一微小位移后放手,小球将作振动,这一振动是否是简谐振动?振动的周期为多少?9.6 一轻弹簧的倔强系数为k,其下悬有一质量为m的盘子。
现有一质量为M的物体从离盘h高度处自由下落到盘中并和盘子粘在一起,盘子开始振动起来。
(1)此时振动周期与空盘振动的周期各为多少?(2)此时振动的振幅。
振动学基础---练习题一、选择1、物体做简谐运动时,下列叙述中正确的是 [ ](A )在平衡位置加速度最大; (B )在平衡位置速度最小; (C )在运动路径两端加速度最大; (D )在运动路径两端加速度最小。
2、作简谐运动的单摆,在最大角位移向平衡位置运动过程中 [ ](A )动能减少,势能增加; (B) 动能增加,势能减少;(C )动能增加,势能增加; (D) 动能减少,势能减少。
3、弹簧振子沿直线作简谐振动,当振子连续两次经过相同位置时,以下说法正确的是(A )加速度不同,动能相同; [ ] (B )动能相同,动量相同; (C )回复力相同,弹性势能相同; (D )位移、速度和加速度都相同。
4、一弹簧振子,当0t =时,物体处在/2x A =(A 为振幅)处且向负方向运动,则它的初相为[ ](A )π3; (B )π6; (C )-π3; (D )-π6。
5、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为 [ ](A) π ; (B) π/2 ; (C) 0 ; (D) θ 。
6、一质点作简谐振动,周期为T 。
当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 [ ](A) T /12 ; (B) T /8 ; (C) T /6 ; (D) T /4 7、一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ ](A)s 81; (B) s 61; (C) s 41; (D) s 21。
8、一弹簧振子,物体的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。
当物体通过平衡位置且向规定的正方向运动时开始计时。
机械振动学基础知识振动的相位与相位差的意义机械振动是物体在受到外力作用下产生的周期性运动。
在振动的过程中,相位和相位差是两个重要的概念,对于理解振动的特性和特征至关重要。
本文将介绍振动的相位和相位差的概念及其在机械振动学中的意义。
相位是描述振动状态的一个重要参数,它表示一个振动物体在一个周期内所处的位置。
在正弦振动中,我们通常用角度来表示相位,其范围为0到360度。
当物体从最大位移向负方向移动时,其相位逐渐增加,当再次到达最大位移时,相位为360度,即一个完整的周期。
相位的改变反映了振动物体在不同时间点的位置,可以帮助我们更清晰地了解振动的状态。
相位差是指振动系统中不同振动物体之间的相位关系。
当两个振动物体的相位差为0时,它们的振动状态完全一致,即两者的振动状态完全相同;当相位差为180度时,它们的振动状态完全相反,即一个在正向振动,另一个在负向振动;当相位差为90度或270度时,它们的振动状态存在一定的偏差,但仍然存在一定的关联性。
通过对相位差的分析,我们可以判断不同振动物体之间的运动状态,帮助我们进一步理解振动系统的特性。
在机械振动学中,相位和相位差的意义不仅在于描述振动的状态,更重要的是帮助我们分析振动系统的动态特性。
通过对振动的相位和相位差进行精确的测量和分析,我们可以确定振动系统的固有频率、共振频率以及其它重要的动态参数,为后续的振动控制和优化提供重要的参考依据。
因此,在研究机械振动时,我们需要充分理解振动的相位和相位差的概念,善于运用它们来分析和解决振动系统中的实际问题。
总之,相位和相位差是机械振动学中非常重要的概念,它们不仅帮助我们描述振动的状态,更重要的是帮助我们分析振动系统的动态特性。
只有深入理解和熟练运用相位和相位差的概念,我们才能更好地理解和控制振动系统的运动规律,为工程实践和科学研究提供更可靠的支持。
希望本文的介绍能够对读者有所帮助,激发大家对机械振动学的兴趣,促进振动领域的进一步发展与应用。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
二、振幅、周期和频率从容说课本节课讲述描述简谐运动的振幅、周期和频率等几个物理量.它是上节课对简谐运动研究的延续,在上节课的基础上引进振幅用来直接反映简谐运动中的最大位移,间接反映简谐运动的能量,引进周期和频率用来反映简谐振动重复运动的快慢.只有切实理解了本节所学的几个物理量,才能更好地、更全面地反映出简谐运动的运动特征.尤其对以后的学习会起到很重要的作用.例如:对交变电流、电磁振荡等知识的学习.结合本节内容的特点,对本节教学的目标定位于:1.知道周期、振幅、频率三个物理量的定义,并理解其物理意义.2.理解周期与频率的关系,并能对二者进行换算.3.知道物体振动固有周期和固有频率.本节课的教学重点在于对周期、频率、振幅的认识和理解.本节课的教学难点是理解振幅与简谐运动能量的定性关系.以及振幅与位移的区别.为了突出重点、突破难点。
使学生能更好地接受知识,本节课采用先学后教、实验演示、讨论总结等方法。
以加深学生的理解,同时采用多媒体辅助教学,以激发学生的学习兴趣,达到圆满完成教学任务的目的.本节课的教学顺序确定如下:复习提问→新课导人→指导自学→归纳总结→强化练习→小结.一、知识目标 _1.知道描述简谐运动的周期、振幅、频率三个物理量.2.理解周期与频率的关系,并能进行两者间的换算.3.了解物体振动的固有周期和固有频率.二、能力目标1.培养学生对知识的归纳、总结能力.2.提高学生对实验的观察、分析能力.三、德育目标通过对简谐运动周期性的学习,使学生理解社会新旧更替.螺旋前进的道理。
教学重点对简谐运动周期、频率、振幅的认识和理解.教学难点1.理解振幅间接反映振动能量的理论依据.2.区分振幅与位移两个物理量.教学方法指导性自学、实验演示、多媒体辅助相结合的综合教学法.教学用具投影片、弹簧振子、秒表、CAI课件课时安排l课时教学过程一、新课导入1.复习提问①什么叫机械振动?②什么叫简谐运动?2.导人通过上节的学习,我们知道了什么是简谐运动,但如何对简谐运动来进行定性的描述和定量的计算呢?这就需要我们引进一些能反映简谐运动特性的物理量——周期、频率和振幅,本节我们就共同来学习这些物理量.二、新课教学(一)振幅、周期和频率.基础知识请学生阅读课文第一部分,同时思考下列问题:[投影片出示]1.什么叫振幅?其物理意义是什么?单位又是什么?用什么符号表示?2.什么叫周期?其物理意义是什么?单位又是什么?用什么符号表示?3.什么叫频率?其物理意义是什么?单位又是什么?用什么符号表示?学生阅读后,得出以上问题的结论:1.a.振动物体离开平衡位置的最大位移叫振幅.b.振幅用来反映振动物体振动的强弱.c.振幅的单位是:米(m).d.振幅的符号是:A.2.a.做简谐运动的物体完成一次全振动所需要的时间叫周期.b.周期是用来反映物体振动快慢的物理量.c.周期的单位是:秒(s).d.周期常用符号:T.3.a.做简谐运动的物体,在单位时间内完成全振动的次数叫频率.b.频率是用来反映物体振动快慢的物理量.c.频率的单位是:赫兹(Hz).d.频率的常用符号:f.深入探究请同学们结合前面所学,考虑以下问题:[投影出示]1.振幅与位移有何区别,有何联系?2.周期与频率有何区别,有何联系?3.试以弹簧振子为例描述一次全振动.学生经过思考、讨论、归纳总结后得出上述问题的结论:1.振幅与位移的区别:a.物理意义不同.振幅是用来反映振动强弱的物理量;位移是用来反映位置变化的物理量.b.矢量性不同.振幅是一标量,只有大小,没有方向;位移是一矢量,既有大小又有方向.振幅与位移的相同点:a.都是反映长度的物理量.振幅是偏离平衡位置的最大距离;位移是偏离平衡位置的距离.其单位都是长度单位.b.位移的最大值就是振幅.2.周期与频率的区别:a.物理意义不同.周期是完成一次全振动所需要的时间;频率是单位时间内完成的全振动的次数.b.单位不同.周期的国际单位是秒;频率的国际单位是赫兹.周期与频率的联系:a.都是用来反映振动快慢的物理量.周期越大,振动得越慢;频率越大,振动得越快.b.周期与频率互成倒数关系.即:T=1.f①O→A→O→A′→O②A→O→ A′→O→A③A′→O→A→O→A′④O→A′→O→A→O教师总结通过上面的学习,我们对描述简谐运动的三个物理量:振幅、周期、频率,已有了一定的认识.下面我们简单应用一下.基础知识应用1.弹簧振子在B、C间做简谐运动,O为平衡位置,BC间距离为10 cm,B→C运动时间为1 s,如图所示.则 ( )A.从O→C→O振子做了一次全振动B.振动周期为1s,振幅是10cmC.经过两次全振动.通过的路程是 20cmD.从B开始经3s,振子通过路程是30cm2.一个弹簧振子.第一次把弹簧压缩x后开始振动.第二次把弹簧压缩2x后开始振动,则两次振动的周期之比和最大加速度的大小之比为()A.1:2,1:2B.1:1,1:1C.1:2,1:2D.1:2,1:13.一个做简谐运动的质点,先后以同样大小的速度通过相距10 cm的A、B两点,历时0.5 s.如图所示,经过B点后再经过t=0.5 s 质点以方向相反、大小相同的速一次通过B点.则质点振动的周期是( )A.0.5 s,B.10sC.2.O sD.4.0s[参考答案]1.解析:振子从0→C→0时位移虽然相同,但速度的方向不同,振动只是半次全振动故A错.振子从B→c是半次全振动,故周期T=2 s,振幅A=OB=BC =52cm.故B错.由全振动的定义知:振子由B→C→B为一次全振动,振子路程s=4 A=4× 5=20 cm,所以两个全振动的路程中2×20cm=40cm,故C错。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x m F G G mx x πρπρ=-=- 令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭ (3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭ (4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。