第6章 热力学第一定律和热化学
- 格式:pdf
- 大小:453.37 KB
- 文档页数:46
第二章 热力学第一定律 一、基本概念1. 系统与环境;状态与状态函数;过程与途径2. PVT 、相变化及化学变化独特的基本概念(略)3. 状态函数:内能、焓 →(H=U+pV )4. 途径函数:功、热★热——恒容热:Q V =ΔU →适用条件:封闭系统、恒容过程、W ’=0; 恒压热:Q p =ΔH →适用条件:封闭系统、恒压过程、W ’=0。
★功——W =-∫p amb d V :真空膨胀过程W =0 恒容过程W =0恒压过程W =-p ΔV ; 恒外压过程:W =-p amb ΔV5. pVT 变化基础热数据热容:C→C p , C V →C p,m ,C V ,m (理想气体的C p,m -C V ,m =R )6. 可逆相变化基础热数据摩尔相变焓:(),m p m p H T C βα∂∆=∆; ΔC p,m =C p,m (β)-C p,m (α) 7. 化学变化基础热数据:θθr m B f m B Δ(B)H H ν∆∑=; θθr m B c m BΔ(B)H H ν∆∑=-二、热力学第一定律:ΔU =Q + W 三、基本过程热数据计算 1. 理想气体pVT 变化过程恒容过程:W =0;,;V V m Q U nC T =∆=∆ ΔH=nC p,m ΔT恒压过程:,;P p m Q H nC T =∆=∆ ΔU=nC V ,m ΔT ;(W =ΔU — Q = — p ΔV ) 恒温可逆过程:ΔU=ΔH=0;—Q= W (可逆)=—nR T ln(V 2/V 1)=nR T ln(p 2/p 1) 恒温恒外压过程:ΔU=ΔH=0;—Q= W (不可逆)=—p amb ΔV绝热可逆过程:过程方程式(重要,自行总结,);Q=0;W =ΔU=nC V ,m ΔT ;ΔH=nC p,m ΔT绝热恒外压过程:Q=0;W =—p amb ΔV=ΔU=nC V ,m ΔT ;ΔH=nC p,m ΔT 节流膨胀:自行总结2. 相变化过程: 可逆相变(平衡温度及其平衡压力下的相变化过程):凝聚相相变化:W=0;ΔU =Q p =ΔH =m n H βα∆含气相相变化:Q p =ΔH = m n H βα∆;W =-p ΔV=-p (V 末-V 始);ΔU =Q p + W不可逆相变:状态函数法设计途径。
1.热力学第一定律热力学第一定律的主要内容,就是能量守恒原理。
能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。
而不同形式的能量在相互转化时永远是数量相当的。
这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。
一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。
总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。
所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。
设计方案之多,但是成千上万份的设计中,没有一个能实现的。
人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。
第一类永动机是不可能制成的,这就是能量守恒原理。
到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。
想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。
1cal = 4.1840J热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。
至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。
把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。
2.热力学第二定律能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。
它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。
也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。
人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。
热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。
封闭系统:与环境只有能量交换而无物质交换的系统。
(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。
2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。
根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。
广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。
强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。
注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。
二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。
它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。
或者说dU与过程无关而δQ和δW却与过程有关。
这里的W既包括体积功也包括非体积功。
以上两个式子便是热力学第一定律的数学表达式。
它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。
三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。
将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。
当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。
第6、7章 热力学第I 、第II 定律原理及应用热力学第I 定律就是能量守恒定律:各种形式能量间相互转化或传递,在转化或传递的过程中,总的能量数量是守恒的。
能量的表现方式一是物质自身的蓄能,如内能、动能、位能和焓、自由能等各种热力学能等,它们都是状态函数;二是以系统和环境间传递的方式表现出来,如热和功,它们均与变化所经历的过程有关,是过程函数。
热力学第II 定律揭示了热和功之间的转化规律。
能量不仅有数量多寡,而且有质量(品位)的高低之分。
从做功能力上看,功可以全部转化为热,而热只能部分变为功,热和功是两种不同品位的能量。
运用热力学第I 定律和第II 定律,研究化工过程中的能量变化,对化工过程的能量转化、传递、使用和损失情况进行分析,揭示能量消耗的大小、原因和部位,为改进工艺过程,提高能量的利用率指出方向和方法,这是过程热力学分析的核心内容。
本章学习要求本章要求学生掌握敞开系统的热力学第I 定律(即能量衡算方程)及其工程应用;热力学第II 定律三种定性表述方式和熵衡算方程,弄清一些基本概念,如系统与环境、环境状态、可逆的热功转换装置(即Carnot 循环)、理想功与损失功、有效能与无效能等,学会应用熵衡算方程、理想功与损失功的计算及有效能衡算方法对化工单元过程进行热力学分析,对能量的使用和消耗进行评价。
重点与难点6 热力学第I 定律及其工程应用6.1 封闭系统能量衡算方程系统在过程前后的能量变化E ∆应与系统在该过程中传递的热量Q 与功W 的代数和:21E E E Q W ∆=-=+(5-1)通常规定:系统吸热为正,放热为负;系统对环境作功,得功为负,式(5-1)即是热力学第I 定律的数学表达式。
6.2 敞开系统的热力学第I 定律22Si i i i j j j j i jW 11Q dE m (h gz u )m (h gz u )22dt dt dt ''δδ++-+++-=∑∑ (5-5)式(5-5)即为敞开系统的热力学第I 定律表达式,其中:i i i h U P V =+。
化学反应中的能量变化与热力学第一定律总结热力学是研究能量转化和传递规律的学科。
在化学反应中,能量的变化是其中一个重要的研究对象。
而热力学第一定律则是描述了系统的能量守恒原理。
本文将对化学反应中的能量变化与热力学第一定律进行总结。
一、化学反应的能量变化化学反应过程中,物质的化学键被破坏和重新组合,从而形成新的物质。
这个过程中伴随着能量的变化,主要有两种情况。
1. 吸热反应吸热反应是指在反应过程中,系统从周围吸收能量。
这种反应的特点是系统的终态能量高于初态能量,因此需要从外部补充能量才能使反应进行。
吸热反应常见的例子有燃烧、融化等。
以燃烧反应为例,燃料在燃烧过程中会吸收周围环境中的热量,将其转化为化学能和热能。
2. 放热反应放热反应是指在反应过程中,系统向周围释放能量。
这种反应的特点是系统的终态能量低于初态能量,因此在反应过程中会释放出能量。
放热反应常见的例子有酸碱中和反应、化学爆炸等。
以酸碱中和反应为例,当酸和碱混合反应时,释放出的能量可以感觉到溶液温度的上升。
二、热力学第一定律热力学第一定律,也被称为能量守恒定律,指出了能量在物质中的转化与传递的基本规律。
根据该定律,能量既不能被创造也不能被破坏,仅仅可以从一种形式转化为另一种形式。
换句话说,系统和周围环境的能量总和保持不变。
热力学第一定律的数学表达方式为:ΔU = Q - W,其中ΔU代表系统内能的变化,Q代表系统从外界吸收或释放的热量,W代表系统对外界做功。
当系统吸收热量时,Q为正值,代表系统获得热量;当系统释放热量时,Q为负值,代表系统失去热量。
系统对外界做功时,W为正值,代表系统对外界做功;当外界对系统做功时,W为负值,代表外界对系统做功。
例如,当一个饱和蒸汽被压缩,发生压缩功时,系统对外界做功。
此时ΔU为负值,代表系统内能减少;W为正值,代表系统对外界做功。
根据热力学第一定律,系统释放的热量Q与压缩功W的总和等于系统内能变化ΔU。
三、结论化学反应中能量的变化与热力学第一定律密切相关。
物理化学热力学第一定律总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) ΔH = Q p恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV ΔH = ΔU + Δ(pV )典型例题:3.11思考题第3题,第4题。
二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。
如恒压,ΔH = Q ,否则不一定相等。
C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:3.18思考题第2,3,4题书2.18、2.19三、 凝聚态物质的ΔU 和ΔH 只和温度有关ΔU = n C V, m d TT 2T 1 ∫ ΔH = n C p, m d TT 2T 1∫ΔU = nC V, m (T 2-T 1) ΔH = nC p, m (T 2-T 1)ΔU ≈ ΔH = n C p, m d TT 2∫ΔU ≈ ΔH = nC p, m (T 2-T 1)或典型例题:书2.15四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)ΔU ≈ ΔH –ΔnRT(Δn :气体摩尔数的变化量。
如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。
101.325 kPa 及其对应温度下的相变可以查表。
其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。
第一章 热力学第一定律和热化学§1–1 热力学基本概念(一) 体系和环境:体系(system):被划定了的研究对象。
环境(surroundings):与体系有密切关联的其余部分。
根据体系与环境之间的物质和能量交换情况,可将体系分为下面三种:1. 孤立体系:体系与环境之间既无物质交换又无能量交换。
2. 封闭体系:体系与环境之间只能有能量交换而没有物质交换。
3. 敝开体系:体系与环境间既有物质又有能量交换。
(二) 体系的性质:体系的性质又称为热力学变量,一般可分为二大类:1. 广度性质(或容量性质)(extensive properties ):与体系所含物质的量成正比的性质,如质量,体积,内能等,具有加和性。
2. 强度性质(intensive properties ):这种性质的数值大小与体系中物质的量无关,不具有加和性。
例如:温度、压力、密度、粘度等。
往往两个容量性质之比成为体系的强度性质,例如密度,它是质量与体积之比;摩尔体积,它是体积与物质的量之比;摩尔热容,它是热容与物质的量之比,而这些均是强度性质。
(三) 热力学平衡态:当体系的性质不随时间而改变,此时体系就处于热力学的平衡态,真正的热力学平衡态应当同时包括以下四个平衡关系:1. 热平衡:体系各部分的温度应相等。
2. 力学平衡:体系各部分之间在没有刚性壁存在的情况下,体系各部分的压力相等。
3. 化学平衡:当体系各物质之间发生化学反应时,达到平衡后,体系的组成不随时间而改变。
4. 相平衡:体系各相的组成和数量不随时间而改变。
(四) 状态函数与状态方程:1. 状态和状态函数:体系的状态是体系的物理性质和化学性质的综合表现。
当体系状态确定后,各性质就有完全确定的值。
由于性质与状态间的这种单值对应关系,故热力学性质称为状态性质,又称作状态函数(state function )。
因为体系的状态性质之间相互有关联,所以要确定一个体系的热力学状态,并不需要知道所有的状态性质,而只需要确定几个状态性质,就可确定体系的状态,但是热力学并不能指出最少需要指定哪几个性质,体系才能处于一定的状态。
热力学第一定律与焓热力学是研究物质内部能量变化和能量传递的学科。
在热力学中,有一个重要的基本定律,即热力学第一定律。
热力学第一定律是能量守恒定律的具体表述,它指出了能量在系统中的转化和传递过程。
热力学第一定律的原理可以通过焓的概念来解释。
焓是一个在热力学中非常重要的物理量,表示了系统的能量和对外做功的能力。
它的符号是H,单位是焦耳(J)。
焓的定义是H=U+PV其中,U是系统的内能,P是压强,V是体积。
内能是系统中分子的平均能量,由分子的热运动引起。
压强和体积则是系统外部条件对系统做功的结果。
根据焓的定义,我们可以推导出焓的变化与内能、压强和体积的关系。
当一定量的物质吸收了热量Q,且对外做了功W时,其焓的变化∆H可以表示为∆H=Q-W焓的增加意味着系统吸收了热量,而焓的减少则意味着系统释放了热量。
热力学第一定律指出了能量在系统中的转化和传递过程,即能量既不能创造也不能消失,只能转化为不同形式的能量。
换言之,系统内的能量增加必定是由于吸收了热量或者对外做了功。
热力学第一定律的数学表达式是∆U=Q-W其中,∆U是系统的内能变化,Q是系统吸收或释放的热量,W是系统对外做的功。
这个方程表明了内能的变化可以由吸热和做功引起。
根据热力学第一定律,我们可以对实际过程进行热力学分析。
例如,当一定量的物质在定压条件下发生化学反应时,系统的焓变等于吸释的热量;当物质在定容条件下发生化学反应时,系统的内能变化等于吸释的热量。
焓在实际应用中有广泛的用途,特别是在化学工程和热力学计算中。
焓的变化可以用于衡量化学反应和相变过程的能量变化,从而帮助我们理解和优化实际过程。
总结一下,热力学第一定律和焓是热力学中的重要概念。
热力学第一定律指出了能量在系统中的转化和传递过程,而焓作为能量和对外做功的能力的度量,帮助我们理解和分析热力学过程。
了解热力学第一定律和焓的原理和应用,对于研究和应用热力学具有重要意义。
热力学中的热力学第一定律热力学是自然科学中有着重要地位的一个分支,这个领域的研究的内容不仅仅包含了物体的动力学,而且还涉及到了物体的热学性质。
热力学第一定律是热力学中最基本的定律,它描述了能量的转换和守恒的规律。
下面我们来更加深入地了解热力学第一定律。
一、热力学第一定律的起源和含义热力学第一定律最早是由热力学创始人之一的朱莱斯·罗塞·卡诺在他的《热机原理》一书中首次提出的。
卡诺认为,热不可能自行从低温体传递到高温体,这就说明热是一种有向的能量。
因此,热力学第一定律被定义为:能量守恒定律。
这个定律的含义是:在任何一个孤立系统中,能量的总量保持不变,只能由一种形态转化为另一种形态。
这种转化可以是机械能转化成热能,也可以是化学能转化成电能等。
二、热力学第一定律的表达形式热力学第一定律可以用数学公式来表示,它是:ΔU = Q - W其中,ΔU表示物体内能的变化量,Q表示热量,W表示功。
这个公式等价于能量守恒定律。
三、热力学第一定律的实际应用热力学第一定律是热力学研究中的一个基本问题。
在实际的热力学现象和热力学过程中,我们经常需要根据热力学第一定律来计算能量转化的过程或者确定温度和内能之间的关系等等。
在实际应用中,热力学第一定律可以帮助我们了解和控制物体内部的能量变化,它因此被广泛应用于热力学领域的各个方面,其中最重要的是热机和热液力机的设计和优化。
同时,热力学第一定律还被应用于化学反应、电化学反应、辐射等领域,为相关领域的研究提供了重要的理论基础。
四、热力学第一定律的意义和贡献热力学第一定律塑造了人们对能量可转化性的认识,扩大了我们对物质质量和能量守恒的理解。
热力学第一定律为工程、化学、天文学等学科的热能转化提供了理论依据,并带动了现代的做法和基础理论。
总之,热力学第一定律是热力学领域中的一个重要的基础定律。
通过对它的深入学习和研究,可以帮助我们进一步理解自然界的规律,推动人类在各个应用领域的发展和进步,从而更好地服务于人类的发展和利益。