线性回归 异方差的诊断 检验和修补 SPSS操作
- 格式:docx
- 大小:10.57 KB
- 文档页数:2
回归分析中的线性关系和异方差性检验一、基本概念回归模型:i i el outcome ε+=mod ,),0(~i i N σε。
线性关系是指n n x b x b x b b el ++++= 22110mod ,即Model 是一个线性函数。
方差异性是指随机变量i ε的方差2i σ不全相等。
残差图:以Model 预测值的标准化(zpred)值为x 轴,以残差的标准化值(zresid)为y 轴的散点图。
线性关系和同方差性成立,那么残差和Model 预测值之间就没有系统的相关关系。
如果图像呈漏斗状,那么表明数据存在异方差性。
如果图像中有任意的曲线,那么表明数据不满足线性关系的假设。
左上图表示数据满足线性关系和同方差性;右上图呈漏斗状,表明数据违反了同方差性的假设;左下图呈曲线,表明在观测值(outcome)和预测变量(predicotr)之间存在非线性关系。
右下图表明数据不仅存在非线性关系,也存在异方差性。
二、异方差性检验方法1. Levene检验零假设:不同分组中的随机变量的方差相等。
当样本容量很大时,不同分组中的变量的方差的微小差异也会引起Levene检验是显著的(拒绝零假设)。
现在已经停止使用这个方法,因为:(a)在各分组的size不同的时候,异方差性才会引发问题,如果各分组的size相等,那么同方差性的假设是不相关的;(b)Levene检验在分组的size相等,样本容量很大时效果才好。
[Discovering Statistics using IBM SPSS Statistics]2. Hartley Fmax检验F max=方差比率=max{各分组中的方差}/min{各分组中的方差}显然,拒绝域是{F max > c}。
三、SPSS软件操作1. Levene检验操作步骤:(1) 点击’Analyze’ -> ’Descriptive Statistics’ -> ’Explore’;‘Factor List’:分组变量。
SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。
接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。
首先,准备好您的数据。
数据应该以特定的格式整理,通常包括自变量和因变量的列。
确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。
打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。
在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。
这将打开多元线性回归的对话框。
在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。
接下来,点击“统计”按钮。
在“统计”对话框中,您可以选择一些常用的统计量。
例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。
根据您的具体需求选择合适的统计量,然后点击“继续”。
再点击“图”按钮。
在这里,您可以选择生成一些有助于直观理解回归结果的图形。
比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。
选择完毕后点击“继续”。
然后点击“保存”按钮。
您可以选择保存预测值、残差等变量,以便后续进一步分析。
完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。
结果通常包括多个部分。
首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。
R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。
其次是方差分析表,用于检验整个回归模型是否显著。
如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。
最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。
回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。
第九章 SPSS的线性回归分析线性回归分析是一种常用的统计方法,用于探索自变量与因变量之间的线性关系。
在SPSS中,进行线性回归分析可以帮助研究者了解变量之间的关系,并预测因变量的数值。
本文将介绍如何在SPSS中进行线性回归分析,并解释如何解释结果。
一、数据准备。
在进行线性回归分析之前,首先需要准备好数据。
在SPSS中,数据通常以数据集的形式存在,可以通过导入外部文件或手动输入数据来创建数据集。
确保数据集中包含自变量和因变量的数值,并且数据的质量良好,没有缺失值或异常值。
二、进行线性回归分析。
在SPSS中进行线性回归分析非常简单。
首先打开SPSS软件,然后打开已经准备好的数据集。
接下来,依次点击“分析”-“回归”-“线性”,将自变量和因变量添加到相应的框中。
在“统计”选项中,可以选择输出各种统计信息,如残差分析、离群值检测等。
点击“确定”按钮后,SPSS会自动进行线性回归分析,并生成相应的结果报告。
三、解释结果。
线性回归分析的结果报告包括了各种统计信息和图表,需要仔细解释和分析。
以下是一些常见的统计信息和图表:1. 相关系数,线性回归分析的结果报告中通常包括了自变量和因变量之间的相关系数,用来衡量两个变量之间的线性关系强度。
相关系数的取值范围为-1到1,接近1表示两个变量呈正相关,接近-1表示呈负相关,接近0表示无相关。
2. 回归系数,回归系数用来衡量自变量对因变量的影响程度。
回归系数的符号表示自变量对因变量的影响方向,系数的大小表示影响程度。
在结果报告中,通常包括了回归系数的估计值、标准误、t值和显著性水平。
3. 残差分析,残差是因变量的观测值与回归方程预测值之间的差异,残差分析可以用来检验回归模型的拟合程度。
在结果报告中,通常包括了残差的分布图和正态概率图,用来检验残差是否符合正态分布。
4. 变量间关系图,在SPSS中,可以生成自变量和因变量之间的散点图和回归直线图,用来直观展示变量之间的线性关系。
线性回归—SPSS操作线性回归是一种用于研究自变量和因变量之间的关系的常用统计方法。
在进行线性回归分析时,我们通常假设误差项是同方差的,即误差项的方差在不同的自变量取值下是相等的。
然而,在实际应用中,误差项的方差可能会随着自变量的变化而发生变化,这就是异方差性问题。
异方差性可能导致对模型的预测能力下降,因此在进行线性回归分析时,需要进行异方差的诊断检验和修补。
在SPSS中,我们可以使用几种方法进行异方差性的诊断检验和修补。
第一种方法是绘制残差图,通过观察残差图的模式来判断是否存在异方差性。
具体的步骤如下:1. 首先,进行线性回归分析,在"Regression"菜单下选择"Linear"。
2. 在"Residuals"选项中,选择"Save standardized residuals",将标准化残差保存。
3. 完成线性回归分析后,在输出结果的"Residuals Statistics"中可以看到标准化残差,将其保存。
4. 在菜单栏中选择"Graphs",然后选择"Legacy Dialogs",再选择"Scatter/Dot"。
5. 在"Simple Scatter"选项中,将保存的标准化残差添加到"Y-Axis",将自变量添加到"X-Axis"。
6.点击"OK"生成残差图。
观察残差图,如果残差随着自变量的变化而出现明显的模式,如呈现"漏斗"形状,则表明存在异方差性。
第二种方法是利用Levene检验进行异方差性的检验。
具体步骤如下:1. 进行线性回归分析,在"Regression"菜单下选择"Linear"。
实验四 异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法; (2)、掌握异方差的处理方法。
二、实验学时:2学时三、实验要求(1)掌握用SPSS 软件实现异方差的检验和处理; (2)掌握异方差的检验和处理的基本步骤。
四、实验原理1、异方差检验的常用方法 (1) 用X-Y 的散点图进行判断(2).22ˆ(,)(,)e x e y 或的图形 ,),x )i i y i i ((e 或(e 的图形)(3).等级相关系数法(又称Spearman 检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。
:i u 0原假设H 是等方差的;:i u 0备择假设H 是异方差; 检验的三个步骤 ①ˆt t y y =- i e②|i x i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)|i x i i 其中, n 为样本容量d 为|e 和的等级的差数。
③ 做等级相关系数的显著性检验。
n>8时,(2)t t n =-0当H 成立时,/2(2),t t n α≤-若认为异方差性问题不存在;/2(2),t t n α>-反之,若||i i e x 说明与之间存在系统关系,异方差问题存在。
(4) 帕克(Park)检验帕克检验常用的函数形式:若α在统计上是显著的,表明存在异方差性。
2、异方差检验的处理方法: 加权最小二乘法如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121i i p pi iy x x u βββ=⋅⋅++⋅+ 在该模型中:2211)()()()()i i ji u u ji jiVar u Var u f x f x f x σσ===即满足同方差性。
于是可以用OLS 估计其参数,得到关于参数12,,,p βββ 的无偏、有效估计量。
如何使用统计软件SPSS进行回归分析一、本文概述在当今的数据分析领域,回归分析已成为了一种重要的统计方法,广泛应用于社会科学、商业、医学等多个领域。
SPSS作为一款功能强大的统计软件,为用户提供了进行回归分析的便捷工具。
本文将详细介绍如何使用SPSS进行回归分析,包括回归分析的基本原理、SPSS 中回归分析的操作步骤、结果解读以及常见问题的解决方法。
通过本文的学习,读者将能够熟练掌握SPSS进行回归分析的方法和技巧,提高数据分析的能力,更好地应用回归分析解决实际问题。
二、SPSS软件基础SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)是一款广泛应用于社会科学领域的数据分析软件,具有强大的数据处理、统计分析、图表制作等功能。
对于回归分析,SPSS 提供了多种方法,如线性回归、曲线估计、逻辑回归等,可以满足用户的不同需求。
在使用SPSS进行回归分析之前,用户需要对其基本操作有一定的了解。
打开SPSS软件后,用户需要熟悉其界面布局,包括菜单栏、工具栏、数据视图和变量视图等。
在数据视图中,用户可以输入或导入需要分析的数据,而在变量视图中,用户可以定义和编辑变量的属性,如变量名、变量类型、测量级别等。
在SPSS中进行回归分析的基本步骤如下:用户需要选择“分析”菜单中的“回归”选项,然后选择适当的回归类型,如线性回归。
接下来,用户需要指定自变量和因变量,可以选择一个或多个自变量,并将它们添加到回归模型中。
在指定变量后,用户还可以设置其他选项,如选择回归模型的类型、设置显著性水平等。
完成这些设置后,用户可以点击“确定”按钮开始回归分析。
SPSS将自动计算回归模型的系数、标准误、显著性水平等统计量,并生成相应的输出表格和图表。
用户可以根据这些结果来评估回归模型的拟合优度、预测能力以及各自变量的贡献程度。
除了基本的回归分析功能外,SPSS还提供了许多高级选项和工具,如模型诊断、变量筛选、多重共线性检测等,以帮助用户更深入地理解和分析回归模型。
实验报告课程名称:实验项目名称:单方程线性回归模型中异方差的检验与补救院(系):专业班级:姓名:学号:实验地点:实验日期:年月日实验目的:掌握利用EViews软件对模型中存在的异方差进行检验和补救。
实验内容:根据我国2000年部分地区城镇居民每个家庭平均全年可支配收入X与消费支出Y 的统计数据,通过建立双变量线性回归模型分析人均可支配收入对人均消费支出的线性影响,并讨论异方差的检验与修正过程。
1、异方差的检验1)图示法2)Park检验3)Glejser检验4)Goldfeld-Quandt检验5)White检验2、异方差的补救1)加权最小二乘法(WLS)2)对数变换实验方法、步骤和结果:一、建立工作文件并完成数据输入1、File---new---workfile2、Quick---Empty Group ----paste3、将ser01重命名为x,ser01重命名为y二、写模型的估计方程Quick---Estimate Equation---y c x,得到在不考虑异方差且其他假定都成立的情况下的估计结果,如下图所示:三、异方差的检验找y的估计值在估计结果中点击forcast 将其重命名为yf生成残差序列:在估计窗口中点击proc---make residual series将resid01重命名为res,并保存(一)图示法(对异方差粗略的判定)1.用x-y的散点图进行判断,看是否存在明显的散点扩大、缩小或是复杂性的变动趋势X y ----open----as GroupView---graph ----scatter-----simple scatter2、用y的估计值与残差平方的散点图进行判断,看是否存在一条斜率为零的直线Quick---graph----scatter—写入方程yf res^2图形显示斜率不为零,所以可知模型存在异方差3、任一解释变量x与残差平方的散点图进行判断,看是否存在一条斜率为零的直线Quick—graph—scatter写入方程x res^2图形显示斜率不为零,所以可知模型存在异方差由以上三种图示法可知,模型存在异方差(二)帕克(Park)检验(将图示法公式化)Quick—Estimate Equation---log(res^2) c log(x)由估计结果可知:log(x)=3.703235 P=0.020622<0.05,所以拒绝原假设,模型具有统计显著性,即模型具有异方差。
实验五异方差的检验与处理一、实验目的:1.掌握异方差检验的基本原理和方法2.掌握异方差的处理方法二、实验要求:1.利用SPSS实现异方差的检验与处理(一元与多元回归);2.掌握异方差检验的基本步骤和方法三、实验原理:1.异方差的检验方法:(1)残差图分析法(3种);(2)等级相关系数法:主要的步骤(见课本).2.异方差的处理方法:(1)加权最小二乘法:主要步骤与原理(2)方差稳定变换法四、实验例子:表4.1(1)利用SPSS建立y对x普通最小二乘回归,Analyze——regression——linear,结果如下:(2)提取残差,并作出残差图:误差随着x的增加呈现出增加的态势。
(3)计算等级相关系数,并进行检验(具体步骤见课本),从结果可以看出,通过P值可以看到拒绝原假设,即残差绝对值与变量之间显著相关,存在异方差。
Cor relations1.000.686**..0003131.686** 1.000.000.3131Correlation CoefficientSig. (2-tailed)NCorrelation Coefficient Sig. (2-tailed)N居民收入(万元)absRE S_1Spearman's rho居民收入(万元)absRE S_1Correlation is significant at the 0.01 level (2-tailed).**.(4)利用加权最小二乘估计对异方差进行处理,首先计算权数。
Analyze ——regression ——weight estimation ,结果如下根据以上结果可知, 1.5m 时对数似然函数达到最大,…….,(课本99页的一段分析),这说明加权最小二乘估计的效果好于普通最小二乘估计效果。
五、练习与作用:(1)课本127页第9题;(2)课本102页例4.4的SPSS实现;(3)课本127页第13题.T4.9(1)由上表可得回归方程:y=-0.831+0.004x由残差图可以看出明显存在异方差,误差的方差随x的增加而增大。
线性回归(异方差的诊断、检验和修补)—S P S S操作首先拟合一般的线性回归模型,绘制残差散点图。
步骤和结果如下:
为方便,只做简单的双变量回归模型,以当前工资作为因变量,初始工资作为自变量。
(你们自己做的时候可以考虑加入其他的自变量,比如受教育程度等等)
Analyze——regression——linear
将当前工资变量拉入dependent框,初始工资进入independent
点击上图中的PLOTS,出现以下对话框:
以标准化残差作为Y轴,标准化预测值作为X轴,点击continue,再点击OK
第一个表格输出的是模型拟合优度2R,为0.775。
调整后的拟合优度为0.774.
第二个是方差分析,可以说是模型整体的显着性检验。
F统计量为1622.1,P值远小于0.05,故拒绝原假设,认为模型是显着的。
第三个是模型的系数,constant代表常数项,初始工资前的系数为1.909,t检验的统计量为40.276,通过P值,发现拒绝原假设,认为系数显着异于0。
以上是输出的残差对预测值的散点图,发现存在喇叭口形状,暗示着异方差的存在,
故接下来进行诊断,一般需要诊断异方差是由哪个自变量引起的,由于这里我们只选用一个变量作为自变量,故认为异方差由唯一的自变量“初始工资”引起。
接下来做加权的最小二乘法,首先计算权数。
Analyze——regression——weight estimation
再点击options,
点击continue,再点击OK,输出如下结果:
由于结果比较长,只贴出一部分,第二栏的值越大越好。
所以挑出来的权重变量的次数为2.7。
得出最佳的权重侯,即可进行回归。
Analyze——regression——linear
继续点击save,
在上面两处打勾,点击continue,点击ok
这是输出结果,和之前同样的分析方法。
接下需要绘制残差对预测值的散点图,首先通过transform里的compute 计算考虑权重后的预测值和残差。
以上两个步骤后即可输出考虑权重后的预测值和残差值
然后点击graph,绘制出的散点图如下:。