小学五年级奥数(上)第六讲 能被30以下质数整除的数的特征_题型归纳
- 格式:docx
- 大小:515.21 KB
- 文档页数:6
小学五年级奥数题——数的整除问题(一)小学五年级奥数题——数的整除问题(二)一、1到200这200个自然数中,能被6或8整除的数共有多少个?二、两位小数□.□1,每个数位上的数字都不同,其中能被24除尽的共有多少个?三、两个整数,他们的积能被和整除,就称为一对“好数”,例如70和30,那么在1,2,3……,16这十六个数中,有好数多少对?四、把一个能被6整除的两位数的十位和个位上的数字互换,得到的一个新的两位数仍然还能被6整除,这样的两位数共有()个,按照从大到小的顺序排列,中间一个是()。
五、在724左边添上一个数字a,右边添上一个数字b,组成一个五位数,如果这个五位数是12的倍数,那么a×b的最大值是多少?六、用六位数可以表示日期,例如,960310表示1996年3月10日。
在表示1996年3月份和4月份日期的61个六位数中,能被3整除的六位数共有()个。
七、老师报出一个四位数,将这个四位数的数码顺序倒排后得到一个新四位数,将这两个四位数相加,甲的答数是9898;乙的答数是9998;丙的答数是9988;丁的答数是9888。
其中有一个同学的结果是正确的,那么做对的同学是()。
八、一个4位数,把它的千位数字移到右端构成一个新的4位数,已知这两个4位数的和是以下5个数中的一个:①9865;②9866;③9867;④9868;⑤9869。
这两个4位数的和是()。
九、六位数3ABABAB是6的倍数,这样的六位数共有多少个?十、一个六位数,它能被9和11整除,去掉这个六位数的首尾两个数字,中间的四位数字是1997,那么这个六位数是多少?1.任一个三位数连续写两次得到一个六位数.试证:这个六位数能同时被7、11、13整除.2.证明:任何两个自然数的和、差、积中,至少有一个数能被3整除.3.某个七位数2000□□□能同时被1、2、3、4、5、6、7、8、9整除,那么最后三位是什么?4.在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。
第六讲能被30以下质数整除的数的特征课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
大家知道,一个整数能被2整除,那么它的个位数能被2整除;反过来也对,也就是一个数的个位数能被2整除,那么这个数本身能被2整除.因此,我们说“一个数的个位数能被2整除”是“这个数能被2整除”的特征.在这一讲中,我们通过寻求对于某些质数成立的等式来导出能被这些质数整除的数的特征。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
为了叙述方便起见,我们把所讨论的数N记为:观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
第六讲 能被30以下质数整除的数的特征大家知道,一个整数能被2整除,那么它的个位数能被2整除;反过来也对,也就是一个数的个位数能被2整除,那么这个数本身能被2整除。
因此,我们说“一个数的个位数能被2整除”是“这个数能被2整除”的特征。
在这一讲中,我们通过寻求对于某些质数成立的等式来导出能被这些质数整除的特征。
为了叙述起见,我们把讨论的数N 记为: N=3210a a a a ⋅⋅⋅ = …+a 3×103+a 2×102+a 1×10+a 0,有时也表示为N=DCBA ⋅⋅⋅。
对于被11整除的数,它的特征为:它的奇位数字之和与偶位数字之和的差(大减小)能被11整除。
一、整除的特征:1.能被2整除的数的特征:个位数字是0、2、4、6、8(偶数)。
2.能被5整除的数的特征:个位数字是0或5。
3.能被3(或9)整除的数的特征:各位数字之和能被3(或9)整除。
4.能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
5.能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
6.能被11整除的数的特征:这个整数的奇数位上数字之和与偶数位上数字之和与偶数位上数字之和的差(大减小)是11的倍数。
7.能被7(11或13)整除的数的特征:一个整数的末三位数与莫三位以前的数字所组成的数之差(大减小)能被7(11或13)整除。
二、整除特征的推导1 被7、11、13整除的数的特征有一关键性式子:7×11×13=1001。
如有一个数有六位,记为N=FEDCBA,那么N=FED×1000+CBA=FED×1001-FED+CBA=FED×(7×11×13)+CBA-FED所以N能被7、11、13整除,相当于CBA-FED或FED-CBA(以大减小)能被7、11、13整除。
总结为公式:①N=GFEDCBA⋅⋅⋅≡CBA-GFED⋅⋅⋅(mod 7)(mod 11)(mod 13)总结:判定某数能否被7或11或13整除,只要把这个数的末三位与前面隔开,分成两个独立的数,取它们的差(大减小),看它是否被7或11或13整除。