传热学第三章new分析
- 格式:ppt
- 大小:6.84 MB
- 文档页数:34
《传热学》第3章_非稳态热传导分析非稳态热传导分析是传热学中一个重要的研究内容。
在真实的物理系统中,尤其是工程实际中,非稳态热传导过程往往更为常见。
非稳态热传导分析主要研究物体内部温度分布随时间的变化规律,以及热传导过程中的能量交换。
本文将重点介绍非稳态热传导分析的基本原理和方法。
非稳态热传导分析需要考虑时间因素以及物质的热传导性质。
在非稳态热传导过程中,物体内部的温度分布随时间的变化满足热传导方程。
传热方程的一般形式为:∂(ρcT)/∂t=k∇²T+Q其中ρ是物质密度,c是比热容,T是温度,k是热传导系数,∇²是拉普拉斯算子,Q是热源项,即热传导过程中的能量增减。
解决非稳态热传导分析的一般步骤如下:1.建立热传导方程。
根据实际情况,确定适当的坐标系,并根据系统的几何形状和边界条件,建立热传导方程。
2.确定边界条件。
边界条件包括物体表面的温度、热通量以及对流边界等。
根据具体情况,选择适当的边界条件。
3.选择合适的数值方法。
非稳态热传导问题通常需要借助数值方法进行求解。
有限差分法、有限元法、迭代法等都可以应用于非稳态热传导分析,具体选择哪种方法需要根据具体问题的特点进行判断。
4.数值求解。
根据使用的数值方法,将热传导方程离散化,并进行数值求解。
通常需要在计算过程中进行迭代,直到得到满足要求的结果。
5.结果分析和验证。
得到物体内部温度随时间的变化规律后,可以通过实验进行验证。
比较模拟结果与实验结果,判断模拟的准确性。
非稳态热传导分析的典型应用包括热处理过程中的温度变化分析、电子元器件的散热分析、建筑物内部温度分布分析等。
通过对非稳态热传导问题的分析,可以更好地理解和控制物体内部温度分布的变化规律,为实际工程提供指导。
然而,非稳态热传导分析也存在一些挑战和限制。
首先,非稳态热传导分析通常需要考虑物质性质的非线性以及边界条件的复杂性,这增加了问题的难度。
其次,非稳态热传导问题的求解往往需要较长的计算时间和大量的计算资源。
传热学重点、题型讲解第三章--非稳态导热第三章非稳态导热第一节非稳态导热的基本概念图3-1 瞬态导热的基本概念图3-2 周期性导热的基本概念第二节无限大平壁的瞬态导热一、加热或冷却过程的分析解法图3-3 第三类边界条件下的瞬态导热图3-4 特征方程的根22xta t ∂∂=∂∂τ τ>0, 0<x <δ (1) 相应地初始条件为τ=0, t t =0 0≤≤x δ (2) 边界条件为xt∂∂|x =0 = 0 (对称性) τ>0 (3) xt∂∂-λ|x =δ = h t (|x =δ-t f ) τ>0 (4) 引用新的变量()()θττx t x t f ,,=-,称为过余温度22x∂∂=∂∂θτθ τ>0, 0<x <0 (3-1) τ=0, θθ=0 0≤≤x δ (3-2)x∂∂θ|x =0 = 0 τ>0 (3-3) x∂∂-θλ|x =δ= h θ|x =δ τ>0 (3-4 ) ()()()θτφτx X x ,= (5)τφφd d a 1=221dx Xd X (6)μτφφ=d d a 1 (7)μ=dxdXX 1 (8) ()φμτ=c a 1exp (9)()φετ=-c a 12exp (10)2221ε-=dxXd X (11) ()()X c x c x =+23cos sin εε (12) ()()()[]()θτεεετx A x x a ,cos sin exp =+-2 (3-5)x∂∂θ|x =0 =()()A B a εεετsin cos exp 002+- ()()()θτεετx A x a ,cos exp =-2 (13) ()[]()()()---=-λεεδετεδετA a hA a sin exp cos exp 22 ()λεεδ=h cot (14)()εδδλεδh ⎛⎝ ⎫⎭⎪=cot (15)ββBi=cot (3-6)式(3-6)称为特征方程。