传热学-第三章.
- 格式:ppt
- 大小:11.70 MB
- 文档页数:44
第三章 非稳态导热(unsteady state conduction)物体的温度随时间而变化的导热过程称非稳态导热。
0≠τ∂∂t,任何非稳态导热过程必然伴随着加热或冷却过程。
根据物体内温度随时间而变化的特征不同,非稳态导热过程可分为两类:(1)周期性导热(periodic unsteady conduction ):物体的温度按照一定的周期发生变化; 如建筑物的外墙和屋顶温度的变化。
(2)瞬态导热(transient conduction):物体的温度随时间不断升高或降低,在经历相当长时间后,物体的温度逐渐趋于周围介质的温度,最终达到热平衡。
分析非稳态导热的任务:找出温度分布和热流密度随时间和空间的变化规律。
第一节 非稳态导热的基本概念一、瞬态导热过程采暖房屋外墙墙内温度变化过程。
采暖设备开始供热前:墙内温度场是稳态、不变的。
采暖设备开始供热:室内空气温度很快升高并稳定;墙壁内温度逐渐升高;越靠近内墙升温越快;经历一段时间后墙内温度趋于稳定、新的温度分布形成。
墙外表面与墙内表面热流密度变化过程 采暖设备开始供热前:二者相等、稳定不变。
采暖设备开始供热:刚开始供热时,由于室内空气温度很快升高并稳定,内墙温度的升高相对慢些,内墙表面热流密度最大;随着内墙温度的升高,内墙表面热流密度逐渐减小;随着外墙表面的缓慢升高,外墙表面热流密度逐渐增大;最终二者相等。
上述非稳态导热过程,存在着右侧面参与换热与不参与换热的两个不同阶段。
(1)第一阶段(右侧面不参与换热)是过程开始的一段时间,特点是:物体中的一部分温度已经发生变化,而另一部分仍维持初始状态时的温度分布(未受到界面温度变化的影响),温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,物体内各处温度随时间的变化率是不一样的,即:在此阶段物体温度分布受t分布的影响较大,此阶段称非正规状况阶段或初始阶段(initialregime)。
(2)第二阶段(右侧面参与换热)当右侧面参与换热以后,物体中的温度分布不受t影响,主要取决于边界条件及物性。
传热学第三章对流传热一、名词解释1.速度边界层:在流场中壁面附近流速发生急剧变化的薄层。
2.温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。
3.定性温度:确定换热过程中流体物性的温度。
4.特征尺度:对于对流传热起决定作用的几何尺寸。
5.相似准则(如Nu,Re,Pr,Gr,Ra):由几个变量组成的无量纲的组合量。
6.强迫对流传热:由于机械(泵或风机等)的作用或其它压差而引起的相对运动。
7.自然对流传热:流体各部分之间由于密度差而引起的相对运动。
8.大空间自然对流传热:传热面上边界层的形成和发展不受周围物体的干扰时的自然对流传热。
9.珠状凝结:当凝结液不能润湿壁面(θ>90˚)时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。
10.膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90˚,凝结液在壁面上形成一层完整的液膜。
11.核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。
12.膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。
二、填空题1.影响自然对流传热系数的主要因素有:、、、、、。
(流动起因,流动速度,流体有无相变,壁面的几何形状、大小和位置,流体的热物理性质)2.速度边界层是指。
(在流场中壁面附近流速发生急剧变化的薄层。
)温度边界层是指。
(在流体温度场中壁面附近温度发生急剧变化的薄层。
)3.流体刚刚流入恒壁温的管道作层流传热时,其局部对流传热系数沿管长逐渐,这是由于。
(减小,边界层厚度沿管长逐渐增厚)4.温度边界层越对流传热系数越小,强化传热应使温度边界层越。
(厚,簿)5.流体流过弯曲的管道或螺旋管时,对流传热系数会,这是由于。
(增大,离心力的作用产生了二次环流增强了扰动)6. 流体横掠管束时,一般情况下, 布置的平均对流传热系数要比 布置时高。
第三章 非稳态导热分析解法1、 重点内容:① 非稳态导热的基本概念及特点;② 集总参数法的基本原理及应用;③一维及二维非稳态导热问题。
2、掌握内容:① 确定瞬时温度场的方法;② 确定在一时间间隔内物体所传导热量的计算方法。
3、了解内容:无限大物体非稳态导热的基本特点。
许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。
如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。
因此,应确定其内部的瞬时温度场。
钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。
§3—1 非稳态导热的基本概念一、非稳态导热1、定义:物体的温度随时间而变化的导热过程称非稳态导热。
2、分类:根据物体内温度随时间而变化的特征不同分:1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ2)物体的温度随时间而作周期性变化1)物体的温度随时间而趋于恒定值如图3-1所示,设一平壁,初值温度t 0,令其左侧的表面温度突然升高到1t 并保持不变,而右侧仍与温度为0t 的空气接触,试分析物体的温度场的变化过程。
首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍保持原来的t 0 。
如图中曲线HBD ,随时间的推移,由于物体导热温度变化波及范围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线HCD 、HE 、HF 。
最后,当时间达到一定值后,温度分布保持恒定,如图中曲线HG (若λ=const ,则HG 是直线)。
由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参与换热的两个不同阶段。
(1)第一阶段(右侧面不参与换热)温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较大,此阶段称非正规状况阶段。
第三章辐射传热一、名词解释1.热辐射:由于物体内部微观粒子的热运动状态改变,而将部分内能转换成电磁波的能量发射出去的过程。
2.吸收比:投射到物体表面的热辐射中被物体所吸收的比例。
3.反射比:投射到物体表面的热辐射中被物体表面所反射的比例。
4.穿透比:投射到物体表面的热辐射中穿透物体的比例。
5.黑体:吸收比α 1的物体。
6.白体:反射比ρl的物体漫射表面7.透明体:透射比η 1的物体8.灰体:光谱吸收比与波长无关的理想物体。
9.黑度:实际物体的辐射力与同温度下黑体辐射力的比值,即物体发射能力接近黑体的程度。
10.辐射力:单位时间内物体的单位辐射面积向外界半球空间发射的全部波长的辐射能。
11.漫反射表面:如果不论外界辐射是以一束射线沿某一方向投入还是从整个半球空间均匀投入,物体表面在半球空间范围内各方向上都有均匀的反射辐射度Lr,则该表面称为漫反射表面。
12.角系数:从表面1发出的辐射能直接落到表面2上的百分数。
13.有效辐射:单位时间内从单位面积离开的总辐射能,即发射辐射和反射辐射之和。
14.投入辐射:单位时间内投射到单位面积上的总辐射能。
15.定向辐射度:单位时间内,单位可见辐射面积在某一方向p的单位立体角内所发出的总辐射能发射辐射和反射辐射,称为在该方向的定向辐射度。
16.漫射表面:如该表面既是漫发射表面,又是漫反射表面,则该表面称为漫射表面。
17.定向辐射力:单位辐射面积在单位时间内向某一方向单位立体角内发射的辐射能。
18.表面辐射热阻:由表面的辐射特性所引起的热阻。
19.遮热板:在两个辐射传热表面之间插入一块或多块薄板以削弱辐射传热。
20.重辐射面:辐射传热系统中表面温度未定而净辐射传热量为零的表面。
二、填空题1.热辐射是由于产生的电磁波辐射。
热辐射波长的单位是,在工业范围内,热辐射的波段主要集中于区段。
热的原因,μm,红外2.太阳与地球间的热量传递属于传热方式。
辐射3.黑体是指的物体,白体是指的物体,透明体是指的物体。
3.稳态导热3.1 知识结构1.一维导热问题(平壁、圆桶壁、球壁)分析解(导热公式、热阻形式);2.温度分布与导热系数和热流的关系;3.变导热系数及变截面问题的解题方法及其对温度分布的影响;4.伸展体导热的微元段分析(一维假设条件、微分方程及系数m的组成);5.三种细长杆(无限高、有限高端部散热、有限高端部绝热)的边界条件、分析解、散热量计算公式,工程计算中的简化方法;6.系数m对温度分布的影响⇒杆内热应力的影响;7.肋片与肋效率(定义、肋效率的影响因素、等截面直肋的肋效率公式);8.接触热阻及其治理方法;9.具有内热源的导热及多维导热。
3.2 重点内容剖析3.2.1 典型稳态导热问题分析解稳态导热问题的主要特征是物体中各点温度不随时间发生变化,只是空间坐标的函数,热流也具有同样性质。
温度在空间坐标上的分布决定导热问题的维数,同样的问题选择不同的坐标系会有不同的维数,维数越多问题越复杂,所以应对具体问题具体分析,从主要因数着手,忽略次要因数,进行适当简化。
一.无限大平壁的分析解(如图3-1)厚度方向传递,亦即温度只在厚度方向变化,→一维导热问题)1.问题(1)均质、单层无限大平壁(一维常物性)(2)无内热源稳态导热(3)平壁两面保持均匀而一定的温度,且t w1>t w2(4)求解平壁内的温度分布t(x)和通过平壁的热流密度。
2.描述问题的数学表达式:微分方程(一维稳态)02222==∂∂dx td x t (3-1) 定解条件:(稳态——无初始条件) 边界条件(第一类):21,,0w w t t x t t x ====δ (3-2)3. 求解对(3-1)两次积分得通解 :21c x c t += (3-3) (3-2)代入(3-3)得待定常数 δ12112,w w w t t c t c -== (3-4)(3-4)代入(3-3)得温度分布(直线) X xt t t t t x t t t w w w w w w =Θ⇒=--+-=δδ121112或(3-5)(无量纲温度与无量纲尺度相等)热流密度: δλδλλ2112w w w w t t t t dx dtq -=--=-= (3-6) (虽然上式就是绪论中的平壁导热公式,但已从感性上升到了理性)二. 多层平壁的导热问题工程中的传热壁面常常是由多层平壁组成的,如表层要考虑外观、防腐、抗老化、防水等因素,内层要考虑耐温、与所接触的介质相容等因素,整个壁面还要考虑强度、能耗、制造成本等问题。
传热学第三章辐射传热一、名词解释1.热辐射:由于物体内部微观粒子的热运动状态改变,而将部分内能转换成电磁波的能量发射出去的过程。
2.吸收比:投射到物体表面的热辐射中被物体所吸收的比例。
3.反射比:投射到物体表面的热辐射中被物体表面所反射的比例。
4.穿透比:投射到物体表面的热辐射中穿透物体的比例。
5.黑体:吸收比α= 1的物体。
6.白体:反射比ρ=l的物体(漫射表面)7.透明体:透射比τ= 1的物体8.灰体:光谱吸收比与波长无关的理想物体。
9.黑度:实际物体的辐射力与同温度下黑体辐射力的比值,即物体发射能力接近黑体的程度。
10.辐射力:单位时间内物体的单位辐射面积向外界(半球空间)发射的全部波长的辐射能。
11.漫反射表面:如果不论外界辐射是以一束射线沿某一方向投入还是从整个半球空间均匀投入,物体表面在半球空间范围内各方向上都有均匀的反射辐射度L r,则该表面称为漫反射表面。
12.角系数:从表面1发出的辐射能直接落到表面2上的百分数。
13.有效辐射:单位时间内从单位面积离开的总辐射能,即发射辐射和反射辐射之和。
14.投入辐射:单位时间内投射到单位面积上的总辐射能。
15.定向辐射度:单位时间内,单位可见辐射面积在某一方向p的单位立体角内所发出的总辐射能(发射辐射和反射辐射),称为在该方向的定向辐射度。
16.漫射表面:如该表面既是漫发射表面,又是漫反射表面,则该表面称为漫射表面。
17.定向辐射力:单位辐射面积在单位时间内向某一方向单位立体角内发射的辐射能。
18.表面辐射热阻:由表面的辐射特性所引起的热阻。
19.遮热板:在两个辐射传热表面之间插入一块或多块薄板以削弱辐射传热。
20.重辐射面:辐射传热系统中表面温度未定而净辐射传热量为零的表面。
二、填空题1.热辐射是由于产生的电磁波辐射。
热辐射波长的单位是,在工业范围内,热辐射的波段主要集中于区段。
(热的原因,μm,红外)2.太阳与地球间的热量传递属于传热方式。
《传热学》第3章_非稳态热传导分析非稳态热传导分析是传热学中一个重要的研究内容。
在真实的物理系统中,尤其是工程实际中,非稳态热传导过程往往更为常见。
非稳态热传导分析主要研究物体内部温度分布随时间的变化规律,以及热传导过程中的能量交换。
本文将重点介绍非稳态热传导分析的基本原理和方法。
非稳态热传导分析需要考虑时间因素以及物质的热传导性质。
在非稳态热传导过程中,物体内部的温度分布随时间的变化满足热传导方程。
传热方程的一般形式为:∂(ρcT)/∂t=k∇²T+Q其中ρ是物质密度,c是比热容,T是温度,k是热传导系数,∇²是拉普拉斯算子,Q是热源项,即热传导过程中的能量增减。
解决非稳态热传导分析的一般步骤如下:1.建立热传导方程。
根据实际情况,确定适当的坐标系,并根据系统的几何形状和边界条件,建立热传导方程。
2.确定边界条件。
边界条件包括物体表面的温度、热通量以及对流边界等。
根据具体情况,选择适当的边界条件。
3.选择合适的数值方法。
非稳态热传导问题通常需要借助数值方法进行求解。
有限差分法、有限元法、迭代法等都可以应用于非稳态热传导分析,具体选择哪种方法需要根据具体问题的特点进行判断。
4.数值求解。
根据使用的数值方法,将热传导方程离散化,并进行数值求解。
通常需要在计算过程中进行迭代,直到得到满足要求的结果。
5.结果分析和验证。
得到物体内部温度随时间的变化规律后,可以通过实验进行验证。
比较模拟结果与实验结果,判断模拟的准确性。
非稳态热传导分析的典型应用包括热处理过程中的温度变化分析、电子元器件的散热分析、建筑物内部温度分布分析等。
通过对非稳态热传导问题的分析,可以更好地理解和控制物体内部温度分布的变化规律,为实际工程提供指导。
然而,非稳态热传导分析也存在一些挑战和限制。
首先,非稳态热传导分析通常需要考虑物质性质的非线性以及边界条件的复杂性,这增加了问题的难度。
其次,非稳态热传导问题的求解往往需要较长的计算时间和大量的计算资源。