信息光学 第二章
- 格式:ppt
- 大小:2.80 MB
- 文档页数:57
光信息处理(信息光学)复习提纲第一章线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?2.空间频率分量的定义及表达式?3.平面波的表达式和球面波的表达式?4.相干照明下物函数复振幅的表示式及物理意义?5.非相干照明下物光强分布的表示式及物理意义?6.线性系统的定义7.线性系统的脉冲响应的表示式及其作用8.何谓线性不变系统9.卷积的物理意义10.线性不变系统的传递函数及其意义11.线性不变系统的本征函数第二章标量衍射理论1.衍射的定义2.惠更斯-菲涅耳原理3.衍射的基尔霍夫公式及其线性表示4.菲涅耳衍射公式及其近似条件5.菲涅耳衍射与傅立叶变换的关系6.会聚球面波照明下的菲涅耳衍射7.夫琅和费衍射公式8.夫琅和费衍射的条件及范围9.夫琅和费衍射与傅立叶变换的关系10.矩形孔的夫琅和费衍射11.圆孔的夫琅和费衍射(贝塞尔函数的计算方面不做要求)12.透镜的位相变换函数13.透镜焦距的判别14.物体位于透镜各个部位的变换作用15.几种典型的傅立叶变换光路第三章光学成象系统的传递函数1.透镜的脉冲响应2.相干传递函数与光瞳函数的关系3.会求几种光瞳的截止频率4.强度脉冲响应的定义5.非相干照明系统的物象关系6.光学传递函数的公式及求解方法7.会求几种情况的光学传递函数及截止频率第五章光学全息1.试列出全息照相与普通照相的区别2.简述全息照相的基本原理3.试画出拍摄三维全息的光路图4.基元全息图的分类5.结合试验谈谈做全息实验应注意什么(没做过实验,只谈一些理论性的注意方面)6.全息照相为什么要防震,有那些防震措施,其依据是什么7.如何检测全息系统是否合格8.全息照相的基本公式9.全息中的物像公式及解题(重点)复 习第一章 线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?时间量 空间量22v T πωπ==22K f ππλ== 时间角频率 空间角频率其中:v ----时间频率 其中:f ---空间频率T----时间周期 λ-----空间周期 物理意义:由图1.7.3知:(设光在z x ,平面内传播,0=y )cos xd λα=, 又 ∵ 1x xf d =联立得:cos x f αλ=讨论:① 当090,,<γβα时0,,>z y x f f f ,表示k沿正方向传播;②标量性,当α↗时,αcos ↘→x f ↘→x d ↗当α↘时,αcos ↗→x f ↗→x d ↘ ③标量性与矢量性的联系条纹密x d ↘→x f ↗→α↘→θ↗x x f d 1=λαcos =x f 条纹疏x d ↗→x f ↘→α↗→θ↘2.空间频率分量的定义及表达式?{}γβαcos ,cos ,cos k k ={}z y x r ,,=)cos cos cos (γβαz y x k r k ++=⋅代入复振幅表达式:()()()[]γβαμcos cos cos ex p ,,,,0z y x jk z y x z y x U ++=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x z y ++=λπμ2ex p ,,0式中:λαcos =x f ,λβcos =yf ,λγcos =z f3.平面波的表达式和球面波的表达式?平面波()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x U λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x U z y x ++=πμ2ex p ,,0球面波()1,,jkr a U x y z e γ=()21212212121221⎪⎪⎭⎫ ⎝⎛++=++=z y x z z y x r近轴时()1,,U x y z ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛++=1221021exp z y x jkz r a()⎪⎪⎭⎫ ⎝⎛+⋅≈1221102exp exp z y x jkjkz z a ⎪⎪⎭⎫ ⎝⎛+=12202exp z y x jkU若球面波中心不在坐标原点,上式改为:()1,,U x y z ()()⎥⎥⎦⎤⎢⎢⎣⎡++-=1202002exp z y y x x jk U4.相干照明下物函数复振幅的表示式及物理意义?设()y x f ,为一物函数的复振幅,其傅氏变换对为 ()()(),exp 2x y x y F f f f x y j f x f y dxdyπ∞-∞⎡⎤=-+⎣⎦⎰⎰ ()()(),exp 2x yxyxyf x y F f f j f x f y df dfπ∞-∞⎡⎤=+⎣⎦⎰⎰可见:物函数()y x f ,可以看作由无数振幅不同()x y x y F f f df df 方向不同()cos ,cos xyf f αλβλ==的平面波相干迭加而成。
第二章信息光学的数学基础◆引言在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。
2.1傅里叶变换◆傅里叶级数首先.让我们回忆周期函数的傅里叶级数展开式,这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量nf x i e2π的幅值.◆频谱的概念频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。
因此,傅立叶分析也称频谱分析。
频谱分为振幅型频谱和相位型频谱。
相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。
为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。
对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。
为了讨论问题方便, 设光栅狭缝总数N 无限大.)(x g 是周期性函数则:上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为这里f 称为空间频率. 0f 是f 的基频.。
周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量.透过率函数也可用复数傅里叶级数表示: 再回到光栅装置.由光栅方程, 在近轴条件下因此透镜后焦面上频率为 当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的. 故傅立叶变换能达到分频的目的。
◆傅里叶变换在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下,上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变),()(md x g x g +=),2,1,( ±±=m ,sin 0λλθnf d n f x =='≈λf x nf f '==0换和逆变换的积分式为 简单地表示为从光学眼光看),(y x g 代表一波前函数,线性相因子)(2y f x f i y x e+π代表—平面波成分,(y x f f ,)代表一空间频率,对应一特定方向的平面波.于是,积分式(******)表明,任一波前可以分解为一系列不同空间频率的平面波前成分的叠加.对于非周期函数,空间频率(y x f f ,)的取值不是离散的,而是连续的,存在于(∞∞-,).因此,在(y x f f ,)一(y y x x df f df f ++,)频率间隔中,平面波成分的振幅系数dA 表示为这给出了谱函数G(y x f f ,)的光学意义一一频率空间中单位频率间隔的振幅系数,即振幅的谱密度函数,简称频谱。
第二章信息光学的数学基础◆引言在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。
2.1傅里叶变换◆傅里叶级数首先.让我们回忆周期函数的傅里叶级数展开式,这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量nf x i e 2π的幅值.◆频谱的概念频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。
因此,傅立叶分析也称频谱分析。
频谱分为振幅型频谱和相位型频谱。
相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。
为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。
对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。
为了讨论问题方便, 设光栅狭缝总数N 无限大.)(x g 是周期性函数则:上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为),()(md x g x g +=),2,1,( ±±=m++-+=)52cos(52)32cos(32)2cos(221)(000x p x f x f x g ππππππ这里f 称为空间频率. 0f 是f 的基频.。
周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量.透过率函数也可用复数傅里叶级数表示:再回到光栅装置.由光栅方程,在近轴条件下因此透镜后焦面上频率为当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的.故傅立叶变换能达到分频的目的。
◆傅里叶变换在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下,上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变换和逆变换的积分式为简单地表示为,5,3,1,dddf =xf i n xf i xf i xf i xp i xf i xf i n eG eeeeeex g 25252323222 )(51)(31)(121)(000000ππππππππππ∑=++++-++=---,sin λθn d =),2,1,0( ±±=n ,sin 0λλθnf dnf x =='≈λf x nf f '==0从光学眼光看),(y x g 代表一波前函数,线性相因子)(2y f x f i y x e+π代表—平面波成分,(y x f f ,)代表一空间频率,对应一特定方向的平面波.于是,积分式(******)表明,任一波前可以分解为一系列不同空间频率的平面波前成分的叠加.对于非周期函数,空间频率(y x f f ,)的取值不是离散的,而是连续的,存在于(∞∞-,).因此,在(y x f f ,)一(y y x x df f df f ++,)频率间隔中,平面波成分的振幅系数dA 表示为这给出了谱函数G(y x f f ,)的光学意义一一频率空间中单位频率间隔的振幅系数,即振幅的谱密度函数,简称频谱。