0_现代光学信息处理导论
- 格式:pdf
- 大小:3.21 MB
- 文档页数:45
第六章光学信息处理6.1光学信息◆什么是光学信息处理光学信息处理是20世纪60年代随着激光器的问世而发展起来的一个新的研究方向,是现代信息处理技术中一个重要组成部分,在现代光学中占有很重要的地位。
所谓光学信息,是指光的强度(或振幅)、相位、颜色(波长)和偏振态等。
光学信息处理是基于光学频谱分析,利用傅里叶综合技术,通过空域或频域调制,借助空间滤波技术对光学信息进行处理的过程。
较多用于对二维图像的处理。
光学信息处理通常有两种分类方法:一种是根据处理系统是否满足叠加原理而分为线性处理和非线性处理;另一种是根据光源的相干性分为相干光处理、非相干光处理和白光处理。
不同的照明方式,系统的性质和处理方法将完全不同。
◆光学信息处理简史事实上,光学信息处理的历史可以追溯到19世纪末、20世纪初。
早在1873年,著名德国科学家阿贝(E.Abbe,1840~1905) 提出了二次成像理论及其相应的实验,就已经为光学信息处理打下了一定的理论基础,是空间滤波与光学信息处理的先导。
1906年Porter首先提出了空间滤波的概念, 他在相干成像系统中的透镜后焦平面上作各种滤波处理,有意改变像的频谱,使成像发生了各种有趣的变化。
1935年荷兰物理学家泽尼克(F. Zernike,1888~1966 )相衬显微镜的发明, 他通过在相干成像系统的频谱面上放置一块位相板和一块吸收板,可以直接观察到位相物,从而荣获1953年度的诺贝尔物理学奖。
而后相干滤波技术被广泛的用来提高图像质量和实现图像的消模糊。
然而相干滤波最为成功的应用是直到60年代初Michigan大学雷达实验室的研究工作,Cutrona等人利用相干光学系统对综合孔径雷达收集到的数据进行处理,成功的绘制出了高分辨率的地貌图;V ander Lugt用离轴全息术制备出复空间滤波器,并成功地应用到光学相关识别和从噪声中提取信号。
到70年代,相干光信息处理已在光学频谱分析、解卷积逆滤波、图像微分和加减、复空间滤波器综合以及相关识别等领域得到应用。
《光学信息处理》isbn -回复光学信息处理:理论与应用引言光学信息处理是基于光学原理与技术的一种信息处理方法,它利用光学器件和技术,对传输、存储、处理信息进行研究和实践。
本文将以《光学信息处理》为主题,逐步探讨光学信息处理的理论基础、主要内容与应用领域。
1. 光学信息处理的理论基础光学信息处理是在光学、电子学以及信息科学的交叉领域中得到发展的。
它借鉴了光学成像、衍射、干涉、全息以及光电技术等方面的理论基础,并结合信息科学的相关理论和方法,构建了光学信息处理的理论基础。
光学信息处理的理论基础主要包括以下几个方面:1.1 光学成像理论:光学信息处理的基本原理是通过光学成像对信息进行转换和处理。
光学成像理论研究了光传播和成像的规律,包括物体成像、像差校正、分辨率等内容。
1.2 光的衍射和干涉理论:衍射和干涉是光学信息处理中常用的技术手段。
衍射理论研究了光通过物体边缘或孔隙时的传播规律,干涉理论研究了两束或多束光相互叠加时的干涉规律。
通过衍射和干涉技术,可以实现光学信息的编码和解码。
1.3 全息理论:全息是光学信息处理的重要方法之一。
全息利用光的相位信息和干涉原理,将物体的三维信息编码到二维介质中,并通过读出这些编码信息来重构出原始物体的全息图像。
全息理论研究了全息图像的形成机制和重构算法。
1.4 光电技术:光电技术是光学信息处理的关键技术之一。
光电技术将光学信号转换成电信号或者将电信号转换成光学信号,并通过光电器件的控制和调制,实现光学信息的采集、传输、存储和处理。
2. 光学信息处理的主要内容光学信息处理的主要内容包括光学图像处理、光学信号处理、光学信息存储与传输、光学计算与逻辑运算、全息成像等。
2.1 光学图像处理:光学图像处理是将图像纹理、色调、对比度、亮度等特征的区域域可以改变,用以提取和增强图像的细节和信息,进而改善图像视觉效果。
光学图像处理技术包括滤波、边缘检测、纹理分析、图像增强、图像重建等。
光学信息处理1. 引 言自六十年代激光出现以来,光学的重要发展之一是形成了一个新的光学分支——傅里叶光学。
傅里叶光学是指把数学中的傅里叶分析方法用于波动光学,把通讯理论中关于时间、时域、时间调制、频率、频谱等概念相应地改为空间、空域、空间调制、空间频率、空间频谱,并用傅里叶变换的观点来描述和处理波动光学中学波的传播、干涉、衍射等。
傅里叶变换已经成为光信息处理的极为重要的工具。
光学信息处理就是对光学图像或光波的振幅分布作进一步的处理。
自从阿贝成像理论提出以后,近代光学信息处理通常是在频域中进行。
由于光的衍射,图像的夫琅和费衍射分布,即图像的空间频谱分布与图像的空间分布规律不同,这使得在频谱面上对其进行处理可获得一些特殊的图像处理效果。
近代光学信息处理具有容量大,速度快,设备简单,可以处理二维图像信息等许多优点,是一门既古老又年青的迅速发展的学科。
光学信息存储、遥感、医疗、产品质量检验等方面有着重要的应用。
2. 实验目的1) 通过实验,加强对傅里叶光学中有关空间频率、空间频谱和空间滤波等概念的理解。
2) 掌握光学滤波技术,观察各种光学滤波器产生的滤波效果,加深对光学信息处理基本思想的认识。
3) 加深对卷积定理的理解4) 了解用光栅滤波实现图像相加减及光学微分的原理和方法。
5) 了解黑白图像等密度的假彩色编码。
3. 实验原理1) 二维傅里叶变换和空间频谱在信息光学中常用傅里叶变换来表达和处理光的成像过程。
设在物屏X -Y 平面上光场的复振幅分布为g (x ,y ) ,根据傅里叶变换特性,可以将这样一个空间分布展开成一系列二维基元函数的线性叠加,即)](2exp[y f x f i y x +π∫∫+∞∞−+=y x y x y xdf df y f x f i f fG y x g )](2exp[),(),(π (1)式中f x 、f y 为x 、y 方向的空间频率,即单位长度内振幅起伏的次数,G (f x ,f y )表示原函数g (x ,y )中相应于空间频率为f x 、f y 的基元函数的权重,亦即各种空间频率的成分占多大的比例,也称为光场(optical field )g (x ,y )的空间频谱。
《现代光学导论》课程教学大纲课程名称:现代光学导论课程类别:专业选修课适用专业:物理学考核方式:考查总学时、学分:32学时 2 学分其中实验学时:0 学时一、课程性质、教学目标《现代光学导论》是依据四年制本科物理学专业培养目标而开设的专业选修课。
通过本课程的学习使学生系统学习从经典波动光学到现代变换光学的基本概念和规律、典型现象和重要应用,以及诸多方面的新进展。
培养学生理论联系实际,结合近代光学发展前沿,开拓学生理论用于实践的方法和创新思路,提高学生解决实际问题的能力。
为从事光学信息处理工作和近代光学信息处理技术的学习打下基础。
其具体的课程教学目标为:课程教学目标1:在经典光学基础上,利用线性系统理论和傅里叶分析方法分析光学问题;从光的物理本质电磁波出发,系统学习现代光学的基础理论,介绍光学信息处理技术的原理以及最新技术进展。
课程教学目标2:理解傅里叶变换所包含的光学变换的概念、思想基础和数理能力,使学生在以后的工作或者科学研究中遇到其他种类的变换比如分数傅里叶变换和小波变换等,也能较快地掌握,同时也可让学生感受数学工具在物理学中的重要地位。
课程教学目标与毕业要求对应的矩阵关系注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求学生应预修普通物理、高等数学、光学等课程。
三、先修课程普通物理、高等数学、光学四、课程教学重、难点重点:现代光学的基础理论、基本概念。
难点:现代光学的物理机制。
五、课程教学方法与教学手段采用课堂讲授式、讨论式等教学方法,借助多媒体辅助教学手段。
通过阅读主要参考书目、网上查询、资料整理和专题讨论,加深对现代光学基本原理的了解,并了解该学科的发展前沿。
六、课程教学内容第一章:波动光学引论(8学时)1.教学内容(1)光波干涉引论;(2)光波衍射引论;(3)偏振光学引论;(4)光波的时空相干性。
光学信息处理
嘿,你有没有想过,为什么我们用手机拍照能把远处的风景拍得那么清楚呢?这里面可藏着一个神奇的学问,那就是光学信息处理。
那啥是光学信息处理呢?简单来说,就是用光学的方法来处理信息。
有点懵?没关系,咱慢慢说。
你看啊,光就像一个神奇的快递员,它带着各种信息跑来跑去。
而光学信息处理呢,就是想办法让这个快递员送的信息更清楚、更有用。
比如说,我们拍照的时候,相机里面就有很多光学元件在进行光学信息处理呢。
镜头就像一个大漏斗,把光收集起来,让它照在相机里面的感光元件上。
这个感光元件就像是一块神奇的画布,把光带来的信息画下来。
但是如果没有光学信息处理,这画可能就不那么清楚啦。
再比如说,医生看病的时候用的一些仪器,也用到了光学信息处理。
那些仪器可以通过光来看看我们身体里面的情况。
如果没有光学信息处理,医生可能就看不清楚身体里面的小毛病了。
还有啊,我们看3D 电影的时候,也有光学信息处理的功劳。
它能让我们感觉电影里的东西好像真的在我们眼前一样。
所以啊,光学信息处理可重要啦。
它让我们看到的世界更清楚、更精彩。
现在你知道为什么我们的手机拍照那么清楚,为什么医生能看清我们身体里面的情况,为什么3D 电影那么逼真了吧?没错,都是因为有光学信息处理这个神奇的学问在发挥作用呢。
下次你再用手机拍照或者看电影的时候,就可以想想光学信息处理的神奇之处啦。