信息光学导论第二章
- 格式:doc
- 大小:648.00 KB
- 文档页数:18
光信息处理(信息光学)复习提纲第一章线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?2.空间频率分量的定义及表达式?3.平面波的表达式和球面波的表达式?4.相干照明下物函数复振幅的表示式及物理意义?5.非相干照明下物光强分布的表示式及物理意义?6.线性系统的定义7.线性系统的脉冲响应的表示式及其作用8.何谓线性不变系统9.卷积的物理意义10.线性不变系统的传递函数及其意义11.线性不变系统的本征函数第二章标量衍射理论1.衍射的定义2.惠更斯-菲涅耳原理3.衍射的基尔霍夫公式及其线性表示4.菲涅耳衍射公式及其近似条件5.菲涅耳衍射与傅立叶变换的关系6.会聚球面波照明下的菲涅耳衍射7.夫琅和费衍射公式8.夫琅和费衍射的条件及范围9.夫琅和费衍射与傅立叶变换的关系10.矩形孔的夫琅和费衍射11.圆孔的夫琅和费衍射(贝塞尔函数的计算方面不做要求)12.透镜的位相变换函数13.透镜焦距的判别14.物体位于透镜各个部位的变换作用15.几种典型的傅立叶变换光路第三章光学成象系统的传递函数1.透镜的脉冲响应2.相干传递函数与光瞳函数的关系3.会求几种光瞳的截止频率4.强度脉冲响应的定义5.非相干照明系统的物象关系6.光学传递函数的公式及求解方法7.会求几种情况的光学传递函数及截止频率第五章光学全息1.试列出全息照相与普通照相的区别2.简述全息照相的基本原理3.试画出拍摄三维全息的光路图4.基元全息图的分类5.结合试验谈谈做全息实验应注意什么(没做过实验,只谈一些理论性的注意方面)6.全息照相为什么要防震,有那些防震措施,其依据是什么7.如何检测全息系统是否合格8.全息照相的基本公式9.全息中的物像公式及解题(重点)复 习第一章 线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?时间量 空间量22v T πωπ==22K f ππλ== 时间角频率 空间角频率其中:v ----时间频率 其中:f ---空间频率T----时间周期 λ-----空间周期 物理意义:由图1.7.3知:(设光在z x ,平面内传播,0=y )cos xd λα=, 又 ∵ 1x xf d =联立得:cos x f αλ=讨论:① 当090,,<γβα时0,,>z y x f f f ,表示k沿正方向传播;②标量性,当α↗时,αcos ↘→x f ↘→x d ↗当α↘时,αcos ↗→x f ↗→x d ↘ ③标量性与矢量性的联系条纹密x d ↘→x f ↗→α↘→θ↗x x f d 1=λαcos =x f 条纹疏x d ↗→x f ↘→α↗→θ↘2.空间频率分量的定义及表达式?{}γβαcos ,cos ,cos k k ={}z y x r ,,=)cos cos cos (γβαz y x k r k ++=⋅代入复振幅表达式:()()()[]γβαμcos cos cos ex p ,,,,0z y x jk z y x z y x U ++=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x z y ++=λπμ2ex p ,,0式中:λαcos =x f ,λβcos =yf ,λγcos =z f3.平面波的表达式和球面波的表达式?平面波()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x U λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x U z y x ++=πμ2ex p ,,0球面波()1,,jkr a U x y z e γ=()21212212121221⎪⎪⎭⎫ ⎝⎛++=++=z y x z z y x r近轴时()1,,U x y z ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛++=1221021exp z y x jkz r a()⎪⎪⎭⎫ ⎝⎛+⋅≈1221102exp exp z y x jkjkz z a ⎪⎪⎭⎫ ⎝⎛+=12202exp z y x jkU若球面波中心不在坐标原点,上式改为:()1,,U x y z ()()⎥⎥⎦⎤⎢⎢⎣⎡++-=1202002exp z y y x x jk U4.相干照明下物函数复振幅的表示式及物理意义?设()y x f ,为一物函数的复振幅,其傅氏变换对为 ()()(),exp 2x y x y F f f f x y j f x f y dxdyπ∞-∞⎡⎤=-+⎣⎦⎰⎰ ()()(),exp 2x yxyxyf x y F f f j f x f y df dfπ∞-∞⎡⎤=+⎣⎦⎰⎰可见:物函数()y x f ,可以看作由无数振幅不同()x y x y F f f df df 方向不同()cos ,cos xyf f αλβλ==的平面波相干迭加而成。
《信息科学导论》课程教学大纲一、课程基本信息课程代码:12301 课程英文名称:《Introduction of Information Science》课程所属单位:数理系电子信息科学与技术教研室课程面向专业:电子信息科学技术专业课程类型:必修课先修课程:(高中数理基础)学分:2学分总学时:40学时二、课程性质与目的信息科学导论是一门介绍信息科学与技术的基本内容的入门和导引性质的课程。
该课程面向电子信息科学与技术专业以及其他相近专业的低年级学生,从整体的角度介绍当代信息科学与技术的主要内容和发展前沿的概貌。
其目的是使学生在信息科学与技术方面能增加兴趣、扩展视野、立足前沿、展望未来,提高信息素养,为进入本专业的进一步学习奠定必要的基础三、课程教学内容与要求(一)第一章信息科学与技术概述1、教学内容与要求(1)理解信息的概念、性质与特点;(2)理解信息科学和信息技术的概念;(3)了解信息科学与技术发展的历史与现状;(4)了解信息科学与技术的发展趋势;(5)了解信息化的概念;(6)了解与信息化相关的基础学科。
2、教学重点理解信息的概念、性质和特点,了解信息科学与技术的发展现状与发展趋势,了解与信息化相关的基础学科。
3、教学难点信息的概念、性质与特点。
(二)第二章微电子技术1、教学内容与要求(1)了解微电子技术发展的历史;(2)理解微电子技术的物理基础;(3)了解集成电路;(4)了解微电子系统设计的基本知识;(5)了解微电子技术的发展趋势。
2、教学重点了解微电子技术的发展历史与发展趋势,理解微电子技术的物理基础,了解集成电路,了解微电子系统设计的基本知识。
3、教学难点微电子技术的物理基础,集成电路,微电子系统设计的基本知识。
(三)第三章光信息科学与技术1、教学内容与要求(1)了解光子学与电子学发展的并行性和互补性;(2)理解关于激光的基本知识;(3)理解光纤的原理与基本特点;(4)了解光纤通信系统与网络;(5)初步了解光放大技术;(6)了解光网络中关键的光子学功能部件;(7)了解光信息存储。
信息光学复习提纲(自编)第一章二维线性系统1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?2 .空间频率分量的定义及表达式?2 .空间频率概念光波的表示式为:j t j (x,y,z)(x, y,z,t) o(x,y,z)e ejK r j to(x,y,z)e e(1.10.2)显然,光波是时间和空间的函数,具有时间周期性与空间周期性。
对于单色光波。
时间量2 v 时间角频率空间量K 2空间角频率物理意义:①当,,900时f x, f y, f z 0 ,表示k沿正方向传播;当,,900时f x, f y, f z 0 ,表示k沿负方向传播。
f x d x /; f x d x\of cosfx②标量性,当 /时,当 \时,coscos其中:v ----时间频率T—时间周期其中: f ---空间频率-----空间周期条纹密d x\f f x/f\f/条纹疏d x /f f x\f/f\可见:条纹越密(d x小),衍射角越大条纹越疏(d x大),衍射角越小③标量性与矢量性的联系1f xd x3. 平面波的表达式①单色平面波的公式U x, y,乙tvv0 cos t k r°e j七vvjk re U x, y, z e式中复振幅为:U x, y, z v v e jk r 0 -0 ex) jk xcos ycos zcos令xcos ycos zcos c3.平面波的表达式和球面波的表达式?可见:等相面是一些平行平面②任一平面上的平面波表示式U x,y,z 0expjkzcos expjkxcos ycosoexpjkz^l co2exp jk xcos ycosU 0exp jk xcos ycos(1.10.36)令xcos ycos c可见,等位线是一些平行线4、球面波的表达式⑴单色球面波的复振幅发散波:(k与v一致)a0 jkr j t jU x, y, z,t -e e U x, y, z e r式中:U x, y,z 旦0e jkr(1.10.5)r会聚波:(k与反向)U x, y, z, t -a0 e jk r e j t U x, y, z e jr式中:U x, y,z 色e jkrr(1.10.6)r (x x))2(y y。
第二章信息光学的数学基础◆引言在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。
2.1傅里叶变换◆傅里叶级数首先.让我们回忆周期函数的傅里叶级数展开式,这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量nf x i e 2π的幅值.◆频谱的概念频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。
因此,傅立叶分析也称频谱分析。
频谱分为振幅型频谱和相位型频谱。
相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。
为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。
对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。
为了讨论问题方便, 设光栅狭缝总数N 无限大.)(x g 是周期性函数则:上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为),()(md x g x g +=),2,1,( ±±=m++-+=)52cos(52)32cos(32)2cos(221)(000x p x f x f x g ππππππ这里f 称为空间频率. 0f 是f 的基频.。
周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量.透过率函数也可用复数傅里叶级数表示:再回到光栅装置.由光栅方程,在近轴条件下因此透镜后焦面上频率为当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的.故傅立叶变换能达到分频的目的。
◆傅里叶变换在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下,上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变换和逆变换的积分式为简单地表示为,5,3,1,dddf =xf i n xf i xf i xf i xp i xf i xf i n eG eeeeeex g 25252323222 )(51)(31)(121)(000000ππππππππππ∑=++++-++=---,sin λθn d =),2,1,0( ±±=n ,sin 0λλθnf dnf x =='≈λf x nf f '==0从光学眼光看),(y x g 代表一波前函数,线性相因子)(2y f x f i y x e+π代表—平面波成分,(y x f f ,)代表一空间频率,对应一特定方向的平面波.于是,积分式(******)表明,任一波前可以分解为一系列不同空间频率的平面波前成分的叠加.对于非周期函数,空间频率(y x f f ,)的取值不是离散的,而是连续的,存在于(∞∞-,).因此,在(y x f f ,)一(y y x x df f df f ++,)频率间隔中,平面波成分的振幅系数dA 表示为这给出了谱函数G(y x f f ,)的光学意义一一频率空间中单位频率间隔的振幅系数,即振幅的谱密度函数,简称频谱。
原函数),(y x g 及其频谱G(y x f f ,),既可以是实数,也可以是复数。
2.2信息光学中常用的若干典型函数的频谱(1)方垒函数.如图*******(a),(b)所示从变换光学眼光看,方垒函数相当平行光正入射于单缝时的被前函数。
其夫琅禾费衍射场正是(******)式给出的sinc 函数形式.(2)相幅型方垒函数.如图******(a),(b)所示.从变换光学眼光看,这相幅型方垒函数,相当于平行光斜入射于单缝时的波前函数,或相当于平行光正入射于薄棱镜时的波前函数,其夫琅禾费衍射场的o 级班中心移至轴外,两侧依然呈现c sin 函数形式,如(******)式所示.(3)准单频函数.如图****所示.准单频函数可以被看作两个相幅型方垒函数之和,从而造成两支频谱,其频谱中心分别在0f ±处.如果,准单频函数代表纯空目信息而与时间变量无关,或代表纯时间信息而与空间变量无关,则这正负两支频谱无独立的物理意义,应将它俩合起来看作—支频谱——谱值加倍,而频率区间缩半于(o ,∞).如果,这准单频函数代表定态波场的复振幅分布,则正负频谱成分有独立含义,各自乘以同一时间因子ti eω-,就分别代表两个相反方向传播的行波,而复振幅分布x f A 02cos π就表示那两列行波叠加的驻波场.(4)正向准单频函数.其中如图*****所示,展现有二支频谱,均系c sin 函数线型,其中心频率分别为0,0f ±.从变换光学眼光看,这)(x g 相当于平行光正入射于一余弦光栅时的波前函数,其夫琅禾费衍射场有三个离散的亮斑,在亮斑邻近区域有光强的少许扩展,这特点由(******)式所反映.(5)三角形函数.如图******所示,其频谱恒为正值.含有明显的高频成分,方能合成带有尖顶的角形原函数.(6)半椭圆形函数.这里)(1 J 是一阶贝塞耳目数,如图******所示.(7)高斯函数.如图****所示.在函数大家庭中,唯有高斯雨数,其频谱依然是高斯型的,它是一个经傅里叶变换后线型不变的独特函数.凭借这一性质,高斯型光束成为激光器谐振腔中能稳定存在的一种模式.高斯函数也是光源的一种基本的光谱线型,因为由温度引起的谱线的多普勒展宽是高斯型的.导出频谱公式(*****]过程中用到一个高斯积分,(8)洛伦兹函数如图******所示,一钟型原函数其频谱变成一尖顶帐篷型。
(9)二维轴对称函数(圆域函数).在空域(x,y)平面上取极坐标(α,r),以简化圆域函数的表示称(*******)式为傅里叶—贝塞耳变换.或零阶汉克尔变换,其中J。
为零阶贝塞耳函数.将(****)式应用于常见的特例——半径为r的圆孔函数,即得其频谱为这结果与我们先前介绍过的圆孔夫琅禾费衍射场的表达式是相似的,仅在系数上有点差别.若将其中的ρ改写为我们一直熟悉的空间频率符号f,且令λθ/f,角θ是衍sin=射方向与圆心轴即透镜光轴的夹角,那(*******I)式就表示了波长为λ的一光束正入射于圆孔时的夫琅禾费衍射场.◆常用函数的傅里叶变换对2.3卷积◆卷积的定义函数)(x f 和)(x h 的卷积用符号)()(x h x f *表示,它定义为⎰∞∞--=*ξξξd x h f x h x f )()()()(根据积分的几何意义,可以把求卷积理解为求两个函数)(ξf 和)(ξ-x h 重叠部分的面积。
◆卷积的性质 (1)线性性质(2)交换律(3)缩放性质(4)结合律(5)与δ的卷积◆卷积的计算(1)图解法为了详细说明图解法的过程,我们选两个函数)(x f 和)(x h 世纪计算器卷积)(x g 。
设)(x f 和)(x h 为实寒暑,如图所示。
其具体数学表达式为30 03x 0 1)( 30 03x 0 2)(⎩⎨⎧><≤≤=⎩⎨⎧><≤≤=,x x x h ,x x x f图解法求卷积)(x g 有如下四个步骤: 1) 折叠由于卷积满足交换率,根据卷积的定义⎰⎰∞∞-∞∞--=-=*ξξξξξξd x f h d x h f x h x f )()()()()()(把任一个函数)(ξf 或)(ξh 相对于纵坐标作出镜像)(ξ-f 或)(ξ-h [这里我们作)(ξh 的景镜像)(ξ-h ]。
为此,虚设积分变量ξ,作出)(ξf 和)(ξ-h 函数图形,如下图所示。
2)位移。
为了得到)(ξ-x f 或)(ξ-x h 需要把)(ξ-f 或)(ξ-h 沿x 轴位移。
为此,要在选一个坐标轴x ,它与ξ平行,并在其上选一个坐标远点,)(ξ-h 平抑一段距离x 便得到)(ξ-x h 。
位移量x 的正负及原点选取的规定为:当x>0时,函数图形)(ξ-h 右移,当x 《0时,函数图形)(ξ-h 左移,当x =0时,函数图形)(ξ-x h =)(ξ-h ,见图****3)相乘。
将)(ξf 与)(ξ-x h 按变量ξ逐点相乘得到)()(ξξ-⋅x h f ,从图形上来看就是这两个函数重叠部分的积。
由于图解过程中)(ξf 保持不变,因此必须沿x 轴来回移动)(ξ-h ,得到对应不同x 值得两函数的乘积。
在x =0情况下,当0<ξ时,0)(=ξf ,则0)()(=-⋅ξξh f ,当1>ξ时,0)(=-ξh ,则乘积0)()(=-⋅ξξh f ,只是当10<<ξ时,0)(≠ξf 和0)(≠-ξh ,乘积0)()(≠-⋅ξξh f ,两函数的成绩为图*****中的直线AB (一般为曲线)。
4)积分。
求出乘积)()(ξξ-⋅x h f 曲线下的面积,即两个函数重叠部分的面积,该面积就是x 出的卷积值。
选择不同的位移量0x x =,就可得到相应的卷积)(0x g ,图*******(b)~(f)分别为)0(g 、)1(-g 、)3(g 、)5(g 。
我们还可以求出其他卷积值并画出x x g ~)(去县,该曲线就是)(x f 和)(x h 的卷积,如图*********(2)解析法解析法就是直接积分⎰∞∞--=*ξξξd x h f x h x f )()()()(求出)(x g 的值。
有图解法求出卷积的结果可见,一般卷积的结果是分段函数,所以积分一般也要分段积分。
由于积分是中含有参变量x ,求积分的关键是确定积分的上下限,一般要与图解法结合起来进行。
以下仍以)(x f 和)(x h 为例说明解析法计算卷积的过程。
根据图解法的结果,卷积可分为以下四段来积分:1)1≤x 。
这时不论x 为何值,)(ξf 与)(ξ-x h 均无重叠部分,乘积0)()(=-⋅ξξx h f ,其积分也等于零。
2)21≤<-x 。
)(ξf 的非零区间为[0,3],由于)(ξh 的非零区间为[-1,2],)(ξ-h 的非零区间为[-2,1],因此,)(ξ-x h 的非零区间为[x x ++-1,2]。
当)0,2(x +-∈ξ时,0)(=ξf ,0)()(=-⋅ξξx h f ;当)3,1(x +∈ξ时,0)(=-ξx h ,0)()(=-⋅ξξx h f 。
因此,)()(ξξ-⋅x h f 的非零区间为[x +1,0],卷积结果为)1(22)()()()(1+==-=*⎰⎰+∞∞-x d d x h f x h x f x ξξξξ)21(≤<-x从上面的分析中,可以得到确定上下限的规律。