深圳中考专项练习-胡不归和阿氏圆教案
- 格式:pdf
- 大小:964.28 KB
- 文档页数:15
2020年中考复习专题:“胡不归”问题在前面的最值问题中往往都是求某个线段最值或者形如PA+PB最值,除此之外我们还可能会遇上形如“PA+kPB”这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆.本文简单介绍“胡不归”模型【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家,根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”(“胡”同“何”)而如果先沿着驿道AC先走一段,再走砂石地,会不会更早到家?【模型建立】如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使ACV2+BCV1的值最小【问题分析】AC V2+BCV1=1V1(BC+V1V2AC),记k=V1V2,即求BC+kAC的最小值【问题解决】构造射线AD使得sin∠DAN=k,CHAC=k,CH=kAC.将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH 取到最小值,即BC+kAC最小.【模型总结】在求形如“PA+kPB"的式子的最值问题中,关键是构造与kPB相等的线段,将“PH+kPB”型问题转化为“PA+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.【2019长沙中考】如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BEBD的最小值是上的一个动点,则CD+√55【2019南通中考】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上PD的最小值等于的一动点,则PB+√32【2014成都中考】如图,已知抛物线y=k8(x+2)(x-4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=−√33x+b与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式(2)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【2018重庆中考】抛物线y=−√66x2−2√33x+√6与x轴交于点A,B(点A在点B的左边),与y轴交于点C.点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+12EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标。
(一)最短路径--------点P 在直线上运动------“胡不归”问题(PA+k·PB 型)如图1-1-1所示,已知sin∠MBN=k,点P 为角∠MBN 其中一边BM 上的一个动点,点A 在射线BM、BN 的同侧,连接AP,则当“PA+k·PB”的值最小时,P 点的位置如何确定?分析:本题的关键在于如何确定“k·PB”的大小,过点P 作PQ⊥BN 垂足为Q,则k·PB=PB·sin∠MBN=PQ,∴本题求“PA+k·PB”的最小值转化为求“PA+PQ”的最小值(如图1-1-2),即A、P、Q 三点共线时最小(如图1-1-3),本题得解。
“胡不归”一般解题步骤:构造新的线段,使其等于k ·PB.Ps :一般系数k 满足0<k <1时直接构造,若k >1时,需要先提取系数,如”PA+2PB=2(21PA+PB).【例题精讲】1.如图,四边形ABCD 是菱形,AB=4,且∠ABC=60°,M 为对角线BD(不含B 点)上任意一点,则AM+21BM 的最小值为___________.2.图1,抛物线与x 轴交于A(−1,0),B(3,0),顶点为D(1,−4),点P 为y 轴上一动点。
(1)求抛物线的解析式;(2)在BC 下方的抛物线上,是否存在异于点D 的点E ,使S 三角形BCE=S 三角形BCD ?若存在,求出E 的坐标;(3)如图2,点M(−32,m)在抛物线上,求MP+22PC 的最小值。
3.如图,抛物线y=1/2x2+mx+n 与直线y=−1/2x+3交于A,B 两点,交x 轴于D,C 两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan ∠BAC 的值;(Ⅱ)在(Ⅰ)条件下:(1)P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ACB 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由。
阿氏圆专题在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型建立】如图 1 所示,⊙O 的半径为R ,点 A 、B 都在⊙O 外 ,P 为⊙O 上一动点,已知R=25OB ,连接 PA 、PB ,则当“PA+25PB ”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段 OB 上截取OC 使 OC=25R ,则可说明△BPO 与△PCO 相似,则有25PB=PC 。
故本题求“PA+25PB ”的最小值可以转化为“PA+PC ”的最小值,其中与A 与C 为定点,P 为动点,故当 A 、P 、C 三点共线时,“PA+PC ”值最小。
【技巧总结】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM△△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④= EABC DP例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),△C 的半径为10,点B 在△C 上一动点,AB OB 55的最小值为________.[答案]:5. 变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,△AB=BD=4,BD是切线,△△ABD=90°,△BAD=△D=45°,△AB是直径,△△APB=90°,△△P AB=△PBA=45°,△P A=PB,PO△AB,△AC=PO=2,AC△PO,△四边形AOPC是平行四边形,△OA=OP,△AOP=90°,△四边形AOPC是正方形,△PM=PC,△PC+PD=PM+PD=DM,△DM△CO,△此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,△B的半径为2,P是△B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:△如图,连接PB、在BC上取一点E,使得BE=1.△PB2=4,BE•BC=4,△PB2=BE•BC,△=,△△PBE=△CBE,△△PBE△△CBE,△==,△PD+PC=PD+PE,△PE+PD≤DE,在Rt△DCE中,DE==5,△PD+PC的最小值为5.△连接DB ,PB ,在BD 上取一点E ,使得BE =,连接EC ,作EF △BC 于F .△PB 2=4,BE •BD =×4=4,△BP 2=BE •BD ,△=,△△PBE =△PBD ,△△PBE △△DBP , △==,△PE =PD ,△PD +4PC =4(PD +PC )=4(PE +PC ),△PE +PC ≥EC ,在Rt△EFC 中,EF =,FC =,△EC =,△PD +4PC 的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152.AB CDPABCDP MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,△B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.△==,==,△=,△△PBG=△PBC,△△PBG△△CBP,△==,△PG=PC,△PD+PC=DP+PG,△DP+PG≥DG,△当D、G、P共线时,PD+PC的值最小,最小值为DG==.△PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF△BC于F.△==2,==2,△=,△△PBG=△PBC,△△PBG△△CBP,△==,△PG=PC,△PD+PC=DP+PG,△DP+PG≥DG,△当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,△DCF=60°,CD=4,△DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==△PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴=,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=或p=﹣(由于E(﹣2,0),所以舍去),∴P(,﹣1),∵C(0,﹣6),∴PC==,即:AM+CM=.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM△AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y =0,则ax 2+(a +3)x +3=0, △(x +1)(ax +3)=0,△x =﹣1或﹣,△抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0), △﹣=4,△a =﹣.△A (4,0),B (0,3), 设直线AB 解析式为y =kx +b ,则,解得,△直线AB 解析式为y =﹣x +3.(2)如图1中,△PM △AB ,PE △OA ,△△PMN =△AEN ,△△PNM =△ANE ,△△PNM △△ANE ,△=,△NE △OB ,△=,△AN =(4﹣m ),△抛物线解析式为y =﹣x 2+x +3,△PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m ,△=,解得m =2.(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE . △OE ′=2,OM ′•OB =×3=4, △OE ′2=OM ′•OB , △=,△△BOE ′=△M ′OE ′,△△M ′OE ′△△E ′OB , △==,△M ′E ′=BE ′,△AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小 (两点间线段最短,A 、M ′、E ′共线时), 最小值=AM ′==.1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2PA+PB的最小值为________.[答案]:3. 如图,等边⊙ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:2.4. 如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,C的半径为2,点P是C上的一动点,则12 AP PB的最小值为?5. 如图,在平面直角坐标系中,()2,0A,()0,2B,()4,0C,()3,2D,P是△AOB外部第一象限内的一动点,且∠BPA=135°,则2PD PC+的最小值是多少?[答案]6. 如图,Rt△ABC,△ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC△△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,△四边形CDEF是正方形,△CF=CD,△DCF=△ACB=90°,△△ACF=△DCB,△AC=CB,△△FCA△△DCB(SAS).(2)解:△如图2中,当点D,E在AB边上时,△AC=BC=2,△ACB=90°,△AB=2,△CD△AB,△AD=BD=,△BD+AD=+1.△如图3中,当点E,F在边AB上时.BD=CF=,AD==,△BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.△CD=,CM=1,CA=2,△CD2=CM•CA,△=,△△DCM=△ACD,△△DCM△△ACD,△==,△DM=AD,△BD+AD=BD+DM,△当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD 最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;△AB=AC,AE=EC,AD=CD,△AE=AD,△AB=AC,△A=△A,AD=AE,△△BAD△△CAE(SAS),△BD=CE.(2)如图2中,在AD上截取AE,使得AE=.△P A2=9,AE•AD=×6=9,△P A2=AE•AD,△=,△△P AE=△DAP,△△P AE△△DAP,△==,△PE=PD,△PC+PD=PC+PE,△PC+PE≥EC,△PC+PD的最小值为EC的长,在Rt△CDE中,△△CDE=90°,CD=6,DE=,△EC==,△PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.△MA2=225,AE•AD=9×25=225,△MA2=AE•AE,△=,△△MAE=△DAM,△△MAE△△DAM,△===,△ME=MD,△MC+MD=MC+ME,△MC+ME≥EC,△MC+MD的最小值为EC的长,在Rt△CDE中,△△CDE=90°,CD=18,DE=16,△EC==2,△MC+MD的最小值为2.。
“PA+k·PB”型的最值问题【问题背景】“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。
当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马问题”模型来处理,即可以转化为轴对称问题来处理。
而当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。
即点P在直线上运动和点P在圆上运动。
其中点P在直线上运动的类型称之为“胡不归”问题;点P在圆周上运动的类型称之为“阿氏圆”问题。
本文将分别从这两类入手与大家共同探究线段最值问题的解决方案。
【知识储备】线段最值问题常用原理:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;【模型初探】(一)点P在直线上运动“胡不归”问题如图1-1-1所示,已知sin∠MBN=k,点P为角∠MBN其中一边BM上的一个动点,点A在射线BM、BN的同侧,连接AP,则当“PA+k·PB”的值最小时,P点的位置如何确定?分析:本题的关键在于如何确定“k·PB”的大小,过点P作PQ⊥BN垂足为Q,则k·PB=PB·sin∠MBN=PQ,∴本题求“PA+k·PB”的最小值转化为求“PA+PQ”的最小值(如图1-1-2),即A、P、Q三点共线时最小(如图1-1-3),本题得解。
图1-1-1图1-1-2图1-1-3思考:当k值大于1时,“PA+k·PB”线段求和问题该如何转化呢?提取系数k即可哦!!!【数学故事】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。
由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。
牛吃草最值问题:1.如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN=1,则△PMN 周长的最小值为.2.如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 周长的最小值为.3.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上一动点,点N(6,0)是OB 上的一定点,点M 是ON 中点,∠AOB=30∘,要使PM+PN 最小,则点P 的坐标为.4.如图,Rt △ABC 中,∠ACB=90º,∠CAB=30º, BC=1,将△ABC 绕点B 顺时针转动, 并把各边缩小为原来的一半,得到△DBE ,点A ,B ,E 在一直线上.P 为边DB 上的动点,则AP+CP 的最小值为 .5.点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA+QB 的值最小的点,则OP OQ ⋅= .N M O P B A Ay6.如图,当四边形PABN 的周长最小时,a =.7.矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为8.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为三角形条件及隐圆最值问题1.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C. 则A′C 长度的最小值是.N (a +2,0)P (a ,0)B (4,-1)A (1,-3)O y x F D C B A x y O E F D C B A x y O E2如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是3.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的边长为4,则线段DH长度的最小值是.4.如图,AB为直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,取AP中点Q,连CQ,则线段CQ的最大值为5.如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BH:CF=6.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.7.如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线OF 绕O点旋转时,CD的最小值为________8.如图,点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______9.AB是半圆O的直径,AB=10,弦AC长为8,点D是弧BC上一个动点,连接AD,作CP⊥AD,垂足为P,连接BP,则BP的最小值是_____10.直线y=x+4 分别与x 轴、y 轴相交与点M、N,边长为2 的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交与点P,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是__________11.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是x−3与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、12.如图,已知直线y=34PB.则△PAB面积的最小值是_____.13.如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD 的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,PM=x,则x的最大值是14.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是15.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是16.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕着点A旋转,当∠ABF最大时,S△ADE =17.如图,在直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为18.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是19.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=20..如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是路径问题:1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC 的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是2.如图,在圆心角为90°的扇形OAB中,OB=2,P为上任意一点,过点P作PE⊥OB于点E,设M为△OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为3.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是4.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.若AF=BE,当点E从点A运动到点C时,则点P经过的路径长为.5.如图,边长为2 的正方形ABCD 的两条对角线交于点O,把BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时正方形ABCD 随之变成四边形A′BCD′.设A′C,BD′交于点O′,若旋转了60°,则点O 运动到点O′所经过的路径长为6.已知等边三角形ABC 的边长为4,点D 是边BC 的中点,点E 在线段BA 上由点B 向点A 运动,连接DE,以DE 为边在DE 右侧作等边三角形DEF.设△DEF 的中心为O,则点 E 由点 B 向点 A 运动的过程中,点O 运动的路径长为胡不归型问题:当 k≠1 且 k 为正数时,若点 P 在某条直线上运动时,此时所求的最短路径问题称之为“胡不归”问题.那么对于当“PA + k·PB”的值最小时,点 P 的位置如何确定呢?过点 P 作 PQ⊥BN,垂足为 Q,如图3则 k·PB = PB·sin∠MBN = PQ.因此,本题求“PA + k·PB”的最小值转化为求“PA +PQ”的最小值,即 A,P,Q 三点共线时最小.1.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+1BM的最小值为.22.在△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是阿氏圆模型问题:已知平面上两点 A,B,则所有满足 PA + k·PB(k≠1,且 k 为正数),若点 P 的轨迹是一个圆,当点 P 在圆周上运动的类型称之为“阿氏圆”(阿波罗尼斯圆)问题.如图所示,⊙O 的半径为 r,点 A,B 都在圆外,P 为⊙O 上的动点,已知 r = k·OB,连接 PA,PB,则当“PA + k·PB”的值最小时,P 点的位置如何确定?在线段 OB 上截取 OC 使 OC = k·r,则可说明△BPO∽△PCO,即 k·PB = PC.因此,求“PA + k·PB”的最小值转化为求“PA + PC”的最小值,即 A,P,C 三点共线时最小1.已知A(-4,-4)、B(0, 4)、C(0, -6)、 D(0, -1),AB与x轴交于点E,以点E为圆心,ED长为半径作圆,点M为⊙E上AM的最小值.一动点,求CM+122.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+1BP的最小值为.2旋转最值及路径问题:1.如图,点O在线段AB上,OA=1,OB=3,以O为圆心,OA长为半径作⊙O,点M在⊙O上运动,连接MB,以MB为腰作等腰Rt△MBC,使∠MBC=90°,M,B,C三点为逆时针顺序,连接AC,则AC长的取值范围为___________.2.如图,线段AB为⊙O的直径,AB=4,点C为OB的中点,点P在⊙O上运动,连接CP,以CP为一边向上作等边△CPD,连接OD,则OD的最大值为___________.3.如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下做等边△ABC,连接OC,则OC的最小值为__________4.如图,在Rt△ABC中,AB=BC=2,点P为AB边上一动点,连接CP,以CP为边向下作等腰RT△CPD,连接BD,则BD的最小值为____________.5..如图,在直角坐标系中,已知点A(4,0),点B为直线y=2上一动点,连接AB,以AB为底边向下做等腰Rt△ABC,∠ACB=90°,连接OC,则OC的最小值为__________6.如图,已知点A(3,0),C(0,-4),⊙C的半径为√5,点P为⊙C上一动点,连接AP,若M为AP的中点,连接OM,则OM的最大值为.7.如图,已知△ABC为等腰直角三角形,∠BAC=90°,AC=2,以点C为圆心,1为半径作圆,点P为⊙C上一动点,连结AP,并绕点A顺时针旋转90°得到AP′,连结CP′,则CP′的取值范围是.8.如图,Rt△ABC中,AC=6,BC=8,∠C=90°.点P是AB边上一动点,D是AC延长线上一点,且AC=CD,连接PD,过点D作.则当点P从点A运动到B点时,点E运动的路径长为DE⊥PD,连接PE,且tan∠DPE=252的一个定点,AC⊥x 轴于点M,交直线y=-x 于点N.若点P 是线段ON 上9.如图,点A 是第一象限内横坐标为3的一个动点,∠APB=30°,BA⊥PA,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.当点P 从点O 运动到点N 时,点B 运动的路径长是旋转构图法(补形)问题:常见旋转模型:1.如图,在△ABC 中,AB=AC=32,∠BAC=120°,点D ,E 都在BC 上,∠DAE=60°,若BD=2CE ,则DE 的长为_____.2.在四边形ABCD 中,AD=4,CD =3,∠ABC=∠ACB =∠ADC=45°,则BD 的长为;3.如图,在△ABC 中,∠ABC=90°,将AB 边绕点A 逆时针旋转90°得到线段AD ,将AC 边绕点C 顺时针旋转90°得到线段CE ,AE 与BD 交于点F .若DF=2,EF=22,则BC 边的长为____________.A D CB E FDE CB A4.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为5.如图,在△ABC中,∠ABC=30°,AB=4 ,BC=5 , P是△ABC内部的任意一点,连接PA , PB , PC,则PA + PB + PC 的最小值为.。
2020年深圳中考数学压轴题专题总结----胡不归问题为了方便同学们掌握,以下为简化版胡不归问题从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。
由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。
邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…”。
这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。
例题精讲例1、如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过B的直线交抛物线于E,且tan ∠EBA=,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是s.【解答】解:过点E作y轴的平行线,再过D点作y轴的平行线,两线相交于点H,如图,∵EH∥AB,∴∠HEB=∠ABE,∴tan∠HED=tan∠EBA==,设DH=4m,EH=3m,则DE=5m,∴蚂蚁从D爬到E点的时间==4(s)若设蚂蚁从D爬到H点的速度为1单位/s,则蚂蚁从D爬到H点的时间==4(s),∴蚂蚁从D爬到E点所用的时间等于从D爬到H点所用的时间相等,∴蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点所用时间等于它从A以1单位/s的速度爬到D点,再从D点以1单位/s 速度爬到H点的时间,作AG⊥EH于G,则AD+DH≥AH≥AG,∴AD+DH的最小值为AQ的长,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),直线BE交y轴于C点,如图,在Rt△OBC中,∵tan∠CBO==,∴OC=4,则C(0,4),设直线BE的解析式为y=kx+b,把B(3,0),C(0,4)代入得,解得,∴直线BE的解析式为y=﹣x+4,解方程组得或,则E 点坐标为(﹣,),∴AQ=,∴蚂蚁从A 爬到G 点的时间==(s ),即蚂蚁从A 到E 的最短时间为s .故答案为.例2、如图,已知抛物线)4)(2(8-+=x x k y (k 为常数,且0>k )与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线b x y +-=33与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与△ABC 相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止。
a=45时, BC 2 AC BC CD BD ;a=30时, BC 1AC BC CD BD22两定一动求最值,最终用垂线段最短来求解阿氏圆-两点之间线段最短构造S ΓMC Sd BpC »51^..∙.CΛΓ=J x炉枝・孔"・与WlU 交点HP 刃点" “亠 fP CJ ΛfPMff9 ・■■• • CRCPRP做中字宁中做• :/>” -J 4~Z ><"点P 刃99匕—必点•詩BP. ・,p*t^⅛Ci ∣lli⅜ BJ«2B>« 2R3Λ0≡K第S 步.【焜示】9522tχ »3«>.斗歩: 笫3F二做中学穿中做•・.PM BP构UrM Szf 次" 9il»Znr rc在BC 上职点3. 快得∙^∙—L rnr J.∙. HM Ii⅛tt<5f ・ ⅛M M 3⅛Z∙J ΨΛA∕∙・PM 」2.:ΛM+ £ PO-Af^PM^JS必诗u.尸.M 三点火SeN 玄小.颠Λff ・ HyNr 中./刀■ W • an■ r∙zr匕在 Q»f Z m■小佢Q C梅系澈不为(的绒段的站个蠟点分别 T例心匕Hlil;接・连接C". CB,il ≡HiMΛtfc[ftc∕>. C"长皮8 辻卸这两务找段长度的比::C .r>~ . Cr 1座CIr上収点Λ*∙ KfW VP 一2桥耒数不为f的电耳曲跆个* 口分别∖UIQ"4H述牍・嗖按〃化HC I il ΛM I WΛ(⅛WΛ∕F・"ciC∕θ½EP/〒it Mix∣*∣*ten κj(r r∣比十T .年CtRJ AΛYK-換第MJBO如四,在RuMC中,NA5 ・9(f^ ,AC-BC- 2 9以於2为顶点的正方用9DEF(C. D、E. F四个頂点按逆时针方向拮列》可以绕点C 自由恰动,且CD■返•连接—IiD.在证方形CDEF施籽过和中∙Bl)D2∕JK]:^j∩ΛCDM ^ΛCΛD Bl*.Λ2*≡^r r∙7∙r74rΓ'fe<*Λ¾Λ4^;的UBlr) H⅜ 个Ml 点分JMWiR∙DCWIFM: .JrlrCiW C2>. 汁Je川两条GW<∕>ιscfv sCD 2itJtlXRMβBWβ:/V的血K■厶T ;CM J2&d卜圾攻H.位够7齐■:..ev h»>r∕Mr.^MI<∙ ΛWΛΛ∕>.,CD CM DM√5・— ------- ----- ■ ——■・■eι CJ>yj.t∕>.W- — ^z>S∙ f “― 职W、z>. Λ/ Xtyy僅"・【盘WJlW?、5】・.,做中T r G做R厠劝XoyΛ" SM <Λ 1 /»第■步•g步■ 弟*步=宋••海5C兰珈=Z>桁系<&不%MM J侦Bt旳网TaX点分別耳剧心LfH ⅛fR ,崔渍6"r?Z>;卄XHlFr 条tfcWl<Λ<. O∕>UΛ*it ∙F⅛∙*⅛Λe⅛wLκ^αft9 比ON J"≡"≡ββCP 2在QMfl9莊匸:级上lRΛCΛr・使御.-.OV釜J^*⅛U.VJ ,⅛Mc ⅛f/Λttp 为点"・CA-IOPOF 1「—■ ■”■ IIt 一■—OM R^f 2..Λ-<y*∙√∙z/ mru 135当■、几M三舄其曲MB小.金上AM「存.<≡><∙丹尸Λτ>fr2 ・AnFGX•上旳动点・x⅛ A ∕≠MC上∙CH-I .经Att .3、"&■ Λff-.m 2D匕的娠小俏[ _________________________________ S SfiB示】:B. O. M三τ≡HαtHgfi⅛<M .【窓兀认1上乐7】<fc∕A7∙ □JU∕V G" 圧为C的IF力用"5 内/W A^Λ⅛• /忖-・?• ∙W∕y IZ、的最小伯・I ISzRlD O n:1 ⅛{⅛*"T∙rςr ,⅛^滋貫口乎手匚门伪CQ 2 CΛf Z>M C∙l ~ √ " O 一 "QCQ 2€:H 47> >Γ- [ 17> CZ S Z?Z S€./> Hn> Hn 2ΠE。
婆罗摩笈多、胡不归、阿氏圆——中考几何穿云箭4大专题
婆罗摩笈多、胡不归、阿氏圆,这些名词对于一般的学生确实比较陌生,但是你要问一下学霸,保证给你说得一套一套的。
今天介绍几个比较综合难度较大的几何模型专题:
①平分面积:通过面积之间的等量代换,解决直线平分图形面积的问题。
②胡不归:通过作辅助线构造直角三角形,根据直角三角形中的边角关系转化线段,运用垂线的性质解决线段和的最小值问题。
③阿氏圆:构造共边共角型(母子型)相似模型,运用相似三角形的判定与性质将线段进行转化,根据“两点之间,线段最短”及勾股定理解决两线段和或差的最值问题。
④婆罗摩及多:(以印度数学家命名的)通常运用全等(相似)三角形的判定与性质,已知中点证垂直或已知垂直证中点。
666。
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题09阿氏圆问题模型建立:已知平面上两点A 、B ,则所有符合=k (k >0且k ≠1)的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似. 模型解读:如图1所示,⊙O 的半径为 r ,点 A 、B 都在⊙O 外,P 为⊙O 上的动点, 已知 r =k ·OB .连接 P A 、PB ,则当“P A +k ·PB ”的值最小时,P 点的位置如何确定?1:连接动点至圆心0(将系数不为1的线段两端点分别与圆心相连接),即连接OP 、OB ; 2:计算连接线段OP 、OB 长度; 3:计算两线段长度的比值OPOB =k ;4:在OB 上截取一点C ,使得OCOP =OPOB 构建母子型相似:5:连接AC ,与圆0交点为P ,即AC 线段长为P A +K *PB 的最小值.本题的关键在于如何确定“k ·PB ”的大小,(如图 2)在线段 OB 上截取 OC 使 OC =k ·r ,则可说明△BPO 与△PCO 相似,即 k ·PB =PC .∴本题求“P A +k ·PB ”的最小值转化为求“P A +PC ”的最小值,即 A 、P 、C 三点共线时最小(如图 3),时AC 线段长即所求最小值.【例1】(2021·全国·九年级专题练习)如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:BP,①AP+12②2AP+BP,AP+BP,③13④AP+3BP的最小值.【例2】(2022·广东惠州·一模)如图1,抛物线y=ax2+bx−4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(−1,0),抛物线的对称轴是直线x=3.2(1)求抛物线的解析式;(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,点Q为⊙C上的一个动点,BQ+FQ的最小值.求√24【例3】(2019秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP =r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.【例4】如图,在每个小正方形的边长为1的网格中,△OAB的顶点O,A,B均在格点上,点E在OA上,且点E 也在格点上.(I)的值为;(Ⅱ)是以点O为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°)连接E'A,E'B,当E'A+E'B的值最小时,请用无刻度的直尺画出点E′,并简要说明点E'的位置是如何找到的(不要求证明).一.填空题(共13小题)1.(2022•南召县开学)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值为.2.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则P A+PB的最小值为.3.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+PB的最小值为.4.(2021秋•梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A (0,1),点B(2,0),点P在弧MN上移动,连接P A,PB,则3P A+PB的最小值为.5.(2021•碑林区校级模拟)如图,在△ABC中,BC=6,∠BAC=60°,则2AB+AC的最大值为.6.(2020•武汉模拟)【新知探究】新定义:平面内两定点A,B,所有满足=k(k为定值)的P点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC中,CB=4,AB=2AC,则△ABC面积的最大值为.7.(2020秋•天宁区校级月考)如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD﹣PC的最大值为.8.(2020•溧阳市一模)如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为.9.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+PC的最小值为.10.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是上一动点,则PC+ PD的最小值为.11.如图所示的平面直角坐标系中,A(0,4),B(4,0),P是第一象限内一动点,OP=2,连接AP、BP,则BP+的最小值是.12.如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为.13.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则P A+PB的最小值为.二.解答题14.(2022•从化区一模)已知,AB是⊙O的直径,AB=,AC=BC.(1)求弦BC的长;(2)若点D是AB下方⊙O上的动点(不与点A,B重合),以CD为边,作正方形CDEF,如图1所示,若M是DF的中点,N是BC的中点,求证:线段MN的长为定值;(3)如图2,点P是动点,且AP=2,连接CP,PB,一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,到达点B后停止运动,求点Q的运动时间t 的最小值.15.(2021•渝中区校级自主招生)如图,在△ABC与△DEF中,∠ACB=∠EDF=90°,BC=AC,ED=FD,点D 在AB上.(1)如图1,若点F在AC的延长线上,连接AE,探究线段AF、AE、AD之间的数量关系,并证明你的结论;(2)如图2,若点D与点A重合,且AC=3,DE=4,将△DEF绕点D旋转,连接BF,点G为BF的中点,连接CG,在旋转的过程中,求CG+BG的最小值;(3)如图3,若点D为AB的中点,连接BF、CE交于点M,CE交AB于点N,且BC:DE:ME=7:9:10,请直接写出的值.16.(2021•九龙坡区校级模拟)在△ABC中,∠CAB=90°,AC=AB.若点D为AC上一点,连接BD,将BD绕点B顺时针旋转90°得到BE,连接CE,交AB于点F.(1)如图1,若∠ABE=75°,BD=4,求AC的长;(2)如图2,点G为BC的中点,连接FG交BD于点H.若∠ABD=30°,猜想线段DC与线段HG的数量关系,并写出证明过程;(3)如图3,若AB=4,D为AC的中点,将△ABD绕点B旋转得△A′BD′,连接A′C、A′D,当A′D+ A′C最小时,求S△A′BC.17.(2021•沙坪坝区校级模拟)如图1,在四边形ABCD中,AC交BD于点E,△ADE为等边三角形.(1)若点E为BD的中点,AD=4,CD=5,求△BCE的面积;(2)如图2,若BC=CD,点F为CD的中点,求证:AB=2AF;(3)如图3,若AB∥CD,∠BAD=90°,点P为四边形ABCD内一点,且∠APD=90°,连接BP,取BP的中点Q,连接CQ.当AB=6,AD=4,tan∠ABC=2时,求CQ+BQ的最小值.18.(2021·全国·九年级专题练习)如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF (C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=√2,连接AF,BD(1)求证:△BDC≌△AFC(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+√22AD的值;(3)直接写出正方形CDEF旋转过程中,BD+√22AD的最小值.19.(2022·四川·,在Rt△ABC中,∠C=90∘,CB=4,CA=6,⊙C的半径为2,P为圆上一动点,连接AP、BP,求AP+12BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图①,连接CP,在CB上取一点D,使CD=1,则CDCP =CPCB=12.又∠PCD=∠BCP,所以△PCD∽△BCP.所以PDBP=CDCP=12.所以PD=12PB,所以AP+12BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+12BP的最小值为________;(2)自主探索:在“问题提出”的条件不变的前提下,求13AP+BP的最小值;(3)拓展延伸:如图②,已知在扇形COD中,∠COD=90∘,OC=6,OA=3,OB=5,P是CD⌢上一点,求2PA+ PB的最小值.20.(2019·山东·中考真题)如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B(1)求抛物线解析式及B(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+12PA的值最小,请求出这个最小值,并说明理由.21.(2018·广西柳州·中考真题)如图,抛物线y=ax2+bx+c与x轴交于A(√3,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=√3OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,12HC为半径作⊙H,点Q为⊙H上的一个动点,求14AQ+EQ的最小值.【例1】(2021·全国·九年级专题练习)如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:①AP+12BP,②2AP+BP,③13AP+BP,④AP+3BP的最小值.【例2】(2022·广东惠州·一模)如图1,抛物线y=ax2+bx−4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(−1,0),抛物线的对称轴是直线x=3.2(1)求抛物线的解析式;(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,点Q为⊙C上的一个动点,BQ+FQ的最小值.求√24【例3】(2019秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP =r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.【分析】(1)在OD上取点M,使得OM:OP=OP:OD=k,利用相似三角形的性质以及两点之间线段最短解决问题即可.(2)利用(1)中结论计算即可.【解答】解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得.(2)∵AC=m=4,=,在CB上取一点M,使得CM=CD=,∴的最小值为.【例4】如图,在每个小正方形的边长为1的网格中,△OAB的顶点O,A,B均在格点上,点E在OA上,且点E 也在格点上.(I)的值为;(Ⅱ)是以点O为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°)连接E'A,E'B,当E'A+E'B的值最小时,请用无刻度的直尺画出点E′,并简要说明点E'的位置是如何找到的(不要求证明)通过取格点K、T,使得OH:OD=2:3,构造相似三角形将E′B转化为E′H.【分析】(1)求出OE,OB即可解决问题.(2)构造相似三角形把E′B转化为E′H,利用两点之间线段最短即可解决问题.【解答】解:(1)由题意OE=2,OB=3,∴=,故答案为:.(2)如图,取格点K,T,连接KT交OB于H,连接AH交于E′,连接BE′,点E′即为所求.故答案为:通过取格点K、T,使得OH:OD=2:3,构造相似三角形将E′B转化为E′H,利用两点之间线段最短即可解决问题.一.填空题(共13小题)1.(2022•南召县开学)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值为.【分析】在AB上截取AQ=1,连接AP,PQ,CQ,证明△APQ∽△ABP,可得PQ=PB,则PB+PC=PC+PQ,当C、Q、P三点共线时,PC+PQ的值最小,求出CQ即为所求.【解析】如图,在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴,∵AP=2,AQ=1,∴,∵∠P AQ=∠BAP,∴△APQ∽△ABP,∴PQ=PB,∴PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QB===.,∴PB+PC的最小值.,故答案为:.2.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则P A+PB的最小值为.【分析】在AC上截取CQ=1,连接CP,PQ,BQ,证明△ACP∽△PCQ,可得PQ=AP,当B、Q、P三点共线时, P A+PB的值最小,求出BQ即为所求.【解析】在AC上截取CQ=1,连接CP,PQ,BQ,∵AC=9,CP=3,∴=,∵CP=3,CQ=1,∴=,∴△ACP∽△PCQ,∴PQ=AP,∴P A+PB=PQ+PB≥BQ,∴当B、Q、P三点共线时,P A+PB的值最小,在Rt△BCQ中,BC=4,CQ=1,∴QB=,∴P A+PB的最小值,故答案为:.3.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+PB的最小值为.【分析】如图,在CB上取一点F,使得CF=,连接PF,AF.利用相似三角形的性质证明PF=PB,根据PF+P A ≥AF,利用勾股定理求出AF即可解决问题.【解析】如图,在CB上取一点F,使得CF=,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵=,=,∴=,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴==,∴PF=PB,∴P A+PB=P A+PF,∵P A+PF≥AF,AF===,∴P A+PB≥,∴P A+PB的最小值为,故答案为.4.(2021秋•梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A (0,1),点B(2,0),点P在弧MN上移动,连接P A,PB,则3P A+PB的最小值为.【分析】在y轴上取点H(0,9),连接BH,通过证明△AOP∽△POH,可证HP=3AP,则3P A+PB=PH+PB,当点P在BH上时,3P A+PB有最小值为HB的长,即可求解.【解析】如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵,∠AOP=∠POH,∴△AOP∽△POH,∴,∴HP=3AP,∴3P A+PB=PH+PB,∴当点P在BH上时,3P A+PB有最小值为HB的长,∴BH===,故答案为:.5.(2021•碑林区校级模拟)如图,在△ABC中,BC=6,∠BAC=60°,则2AB+AC的最大值为4.【分析】由2AB+AC=2(AB+)得,再将AB+AE转化成一条线段BP,可证出∠P是定角,从而点P在△PBC的外接圆上运动,当BP为直径时,BP最大解决问题.【解析】∵2AB+AC=2(AB+),∴求2AB+AC的最大值就是求2(AB+)的最大值,过C作CE⊥AB于E,延长EA到P,使得AP=AE,∵∠BAC=60°,∴EA=,∴AB+=AB+AP,∵EC=,PE=2AE,由勾股定理得:PC=,∴sin P=,∴∠P为定值,∵BC=6是定值,∴点P在△CBP的外接圆上,∵AB+AP=BP,∴当BP为直径时,AB+AP最大,即BP',∴sin P'=sin P=,解得BP'=2,∴AB+AP=2,∴2AB+AC=2(AB+AP)=4,故答案为:4.6.(2020•武汉模拟)【新知探究】新定义:平面内两定点A,B,所有满足=k(k为定值)的P点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC中,CB=4,AB=2AC,则△ABC面积的最大值为.【分析】以A为顶点,AC为边,在△ABC外部作∠CAP=∠ABC,AP与BC的延长线交于点P,证明△APC∽△BP A,由相似三角形的性质可得BP=2AP,CP=AP,从而求出AP、BP和CP,即可求出点A的运动轨迹,再找出距离BC最远的A点的位置即可求解.【解析】以A为顶点,AC为边,在△ABC外部作∠CAP=∠ABC,AP与BC的延长线交于点P,∵∠CAP=∠ABC,∠BP A=∠APC,AB=2AC,∴△APC∽△BP A,,∴BP=2AP,CP=AP,∵BP﹣CP=BC=4,∴2AP﹣AP=4,解得:AP=,∴BP=,CP=,即点P为定点,∴点A的轨迹为以点P为圆心,为半径的圆上,如图,过点P作BC的垂线,交圆P与点A1,此时点A1到BC 的距离最大,即△ABC的面积最大,S△ABC=BC•A1P=×4×=.故答案为:.7.(2020秋•天宁区校级月考)如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD﹣PC的最大值为2.【分析】连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.利用相似三角形的性质证明PG=PC,再根据PD﹣PC=PD﹣PG≤DG,求出DG,可得结论.【解析】连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.∵PB=4,BG=2,BC=8,∴PB2=BG•BC,∴=,∵∠PBG=∠CBP,∴△PBG∽△CBP,∴==,∴PG=PC,∵四边形ABCD是菱形,∴AB∥CD,AB=CD=BC=8,∴∠DCH=∠ABC=60°,在Rt△CDH中,CH=CD•cos60°=4,DH=CD•sin60°=4,∴GH=CG+CH=6+4=10,∴DG===2,∵PD﹣PC=PD﹣PG≤DG,∴PD﹣PC≤2,∴PD﹣PC的最大值为2.8.(2020•溧阳市一模)如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为.【分析】延长OB到T,使得BT=OB,连接MT,CT.利用相似三角形的性质证明MT=2DM,求CM+2DM的最小值问题转化为求CM+MT的最小值.求出CT即可判断.【解析】延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴=,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴==,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT===4,∴CM+2DM≥4,∴CM+2DM的最小值为4,∴答案为4.9.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+PC的最小值为5.【分析】如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.证明△PBT∽△CBP,推出==,推出PT=PC,由PD+PC=PD+PT≥DT=5,由此可得结论.【解析】如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.∵四边形ABCD是正方形,∴∠DCT=90°,∵CD=4,CT=3,∴DT===5,∵PB=2,BT=1,BC=4,∴PB2=BT•BC,∴=,∵∠PBT=∠PBC,∴△PBT∽△CBP,∴==,∴PT=PC,∵PD+PC=PD+PT≥DT=5,∴PD+PC的最小值为5,故答案为:5.10.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是上一动点,则PC+ PD的最小值为.【分析】如图,延长OA使AE=OB,连接EC,EP,OP,证明△OPE∽△OCP推出==,推出EP=2PC,推出PC+PD=(2PC+PD)=(PD+PE),推出当点E,点P,点D三点共线时,PC+PD的值最小.【解析】如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴==,且∠COP=∠EOP∴△OPE∽△OCP∴==,∴EP=2PC,∴PC+PD=(2PC+PD)=(PD+PE),∴当点E,点P,点D三点共线时,PC+PD的值最小,∵DE===13,∴PD+PE≥DE=13,∴PD+PE的最小值为13,∴PC+PD的值最小值为.故答案为:.11.如图所示的平面直角坐标系中,A(0,4),B(4,0),P是第一象限内一动点,OP=2,连接AP、BP,则BP+的最小值是.【分析】如图,取点T(0,1),连接PT,BT.利用相似三角形的性质证明PT=PB,推出PB+P A=PB+PT≥BT,求出BT,可得结论.【解析】如图,取点T(0,1),连接PT,BT.∵T(0,1),A(0,4),B(4,0),∴OT=1,OA=4,OB=4,∵OP=2,∴OP2=OT•OA,∴=,∵∠POT=∠AOP,∴△POT∽△AOP,∴==,∴PT=P A,∴PB+P A=PB+PT,∵BT==,∴PB+PT≥,∴BP+AP≥∴BP+PB的最小值为.故答案为:.12.如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为6﹣2≤PM+2PN≤6+2.【分析】PM+2PN=2(PM+PN),作MH⊥PN,HP=PM,确定HN的最大值和最小值.【解答】解:作MH⊥NP于H,作MF⊥BC于F,∵PM⊥AC,PN⊥CB,∴∠PMC=∠PNC=90°,∴∠MPN=360°﹣∠PMC﹣∠PNC﹣∠C=120°,∴∠MPH=180°﹣∠MPN=60°,∴HP=PM•cos∠MPH=PM•cos60°=PM,∴PN+PM=PN+HP=NH,∵MF=NH,∴当MP与⊙O相切时,MF取得最大和最小,如图1,连接OP,OG,可得:四边形OPMG是正方形,∴MG=OP=2,在Rt△COG中,CG=OG•tan60°=2,∴CM=CG+GM=2+2,在Rt△CMF中,MF=CM•cos C=(2+2)×=3+,∴HN=MF=3+,PM+2PN=2()=2HN=6+2,如图2,由上知:CG=2,MG=2,∴CM=2﹣2,∴HM=(2﹣2)×=3﹣,∴PM+2PN=2()=2HN=6﹣2,∴6﹣2≤PM+2PN≤6+2.13.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则P A+PB的最小值为2.【分析】P A+PB=(P A+PB),利用相似三角形构造PB.【解答】解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵P A+PB=(P A+PB),∴P A+PB的最小值是AI==2.故答案是2.二.解答题14.(2022•从化区一模)已知,AB是⊙O的直径,AB=,AC=BC.(1)求弦BC的长;(2)若点D是AB下方⊙O上的动点(不与点A,B重合),以CD为边,作正方形CDEF,如图1所示,若M是DF的中点,N是BC的中点,求证:线段MN的长为定值;(3)如图2,点P是动点,且AP=2,连接CP,PB,一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,到达点B后停止运动,求点Q的运动时间t 的最小值.【分析】(1)AB是⊙O的直径,AC=BC可得到△ABC是等腰直角三角形,从而得道答案;(2)连接AD、CM、DB、FB,ACD≌△BCF,∠CBF=∠CAD,证明D、B、F共线,再证明△CMB 是直角三角形,根据直角三角形斜边上的中线等于斜边的一半,即可得证;(3)“阿氏圆”的应用问题,以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB于H,连接BM交⊙A于P',先证明PM=,+BP最小,即是PM+BP最小,此时P、B、M共线,再计算BM的长度即可.【解析】(1)∵AB是⊙O的直径,∴∠ABC=90°,∵AC=BC,∴△ABC是等腰直角三角形,∠CAB=45°,∵AB=4,∴BC=AB•sin45°=4;(2)连接AD、CM、DB、FB,如图:∵△ABC是等腰直角三角形,四边形CDEF是正方形,∴CD=CF,∠DCF=∠ACB=90°,∴∠ACD=90﹣∠DCB=∠BCF,又AC=BC,∴△ACD≌△BCF(SAS),∴∠CBF=∠CAD,∴∠CBF+∠ABC+∠ABD=∠CAD+∠ABC+∠ABD=∠DAB+∠CAB++∠ABC+∠ABD=∠DAB+45°+45°+∠ABD,而AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∴∠CBF+∠ABC+∠ABD=180°,∴D、B、F共线,∵四边形CDEF是正方形,∴△DCF是等腰直角三角形,∵M是DF的中点,∴CM⊥DF,即△CMB是直角三角形,∵N是BC的中点,∴MN=BC=2,即MN为定值;(3)以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB于H,连接BM交⊙A于P',如图:一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,∴Q运动时间t=+BP,∵AM=1,AP=2,AC=BC=4,∴==,又∠MAP=∠P AC,∴△MAP∽△P AC,∴==,∴PM=,∴+BP最小,即是PM+BP最小,此时P、B、M共线,即P与P'重合,t=+BP最小值即是BM的长度,在Rt△AMH中,∠MAH=45°,AM=1,∴AH=MH=,∵AB=4,∴BH=AB﹣AH=,Rt△BMH中,BM==5,∴点Q的运动时间t的最小值为5.15.(2021•渝中区校级自主招生)如图,在△ABC与△DEF中,∠ACB=∠EDF=90°,BC=AC,ED=FD,点D 在AB上.(1)如图1,若点F在AC的延长线上,连接AE,探究线段AF、AE、AD之间的数量关系,并证明你的结论;(2)如图2,若点D与点A重合,且AC=3,DE=4,将△DEF绕点D旋转,连接BF,点G为BF的中点,连接CG,在旋转的过程中,求CG+BG的最小值;(3)如图3,若点D为AB的中点,连接BF、CE交于点M,CE交AB于点N,且BC:DE:ME=7:9:10,请直接写出的值.【分析】(1)过F作FH⊥AB于H,过E作EG⊥AB于G,结合K字型全等,等腰直角三角形,四点共圆即可得到答案;(2)第二问考察隐圆问题与阿氏圆,取AB的中点O,连接OG,在OB上取OH=,连接GH,构建相似,转化线段即可得到答案;(3)过点C作BF平行线,点F作BC平行线交于点G;过点G作GH⊥BF于点H,过点K作KI⊥FG,证明△BDF≌△CDE,设BC=7t,则DE=9t,ME=10t,结合勾股定理、相似三角形及解直角三角形的知识进行计算.【解析】(1)线段AF、AE、AD之间的数量关系:,证明如下:过F作FH⊥AB于H,过E作EG⊥AB于G,如图:∵FH⊥AB,EG⊥AB,∠EDF=90°,∴∠FHD=∠DGE=90°,∠FDH=90°﹣∠EDG=∠DEG,且DF=DE,∴△FHD≌△DGE(AAS),∴FH=DG=AD+AG,∵∠ACB=∠EDF=90°,BC=AC,ED=FD,∴∠F AB=∠FED=45°,∴点F、D、A、E四点共圆,∴∠F AE=∠FDE=90°,∠EAG=∠DFE=45°,∵FH⊥AB,EG⊥AB,∠BAC=45°,∴△F AH和△EAG为等腰直角三角形,∴AF=FH,AE=AG,∴AF=(AD+AG)=AD+AG=AD+AE;(2)取AB的中点O,连接OG,在OB上取OH=,连接GH,如图:∵G为BF的中点,O为AB中点,∴OG是△ABF的中位线,∴OG=AF=DF=DE=2,∵AC=3,∴AB=AC=6,OB=AB=3,∴=,而==,∴=,又∠HOG=∠GOB,∴△HOG∽△GOB,∴==,∴HG=BG,∴,要使CG+BG的最小,需CG+HG最小,∴当H、G、C三点共线时,CG+BG的最小,CG+BG的最小值是CH,如图:∵OC=AB=3,OH=,∴CH==,∴CG+BG的最小值是CH=×=.(3)过点C作BF平行线,点F作BC平行线交于点G;过点G作GH⊥BF于点H,过点K作KI⊥FG;如图:∵∠BDC=∠FDE=90°,∴∠BDC+∠CDF=∠FDE+∠CDF,即∠BDF=∠CDE,且CD=BD,DE=DF,∴△BDF≌△CDE(SAS),∴BF=CE,∠DEC=∠DFB,∵∠DEC+∠DPE=90°,∠DPE=∠MPF,∴∠DFB+∠MPF=90°,∴∠FME=90°由BC:DE:ME=7:9:10,设BC=7t,则DE=9t,ME=10t;∴EF=DE=9t,∵CG∥BF,FG∥BC,∴四边形BFGC为平行四边形,∴CE=BF=CG,∠ECG=∠FME=90°,∴△ECG为等腰直角三角形,∴∠CGE=45°=∠GKH,∴△GKH为等腰直角三角形,∴=,==,=,∴,∴△CDE∽△GFE,∴∠DCE=∠FGE,∴;Rt△MFE中,MF==t,∴FK=MK﹣MF=ME﹣MF=10t﹣t,FG=BC=7t,设∠GFH=α,∠KGI=∠NCD=β,∴=,Rt△FKI中,sinα=,∴,∵GH=,∴KI=FK•=,∴sinβ=====,∴.16.(2021•九龙坡区校级模拟)在△ABC中,∠CAB=90°,AC=AB.若点D为AC上一点,连接BD,将BD绕点B顺时针旋转90°得到BE,,交AB于点F.(1)如图1,若∠ABE=75°,BD=4,求AC的长;(2)如图2,点G为BC的中点,连接FG交BD于点H.若∠ABD=30°,猜想线段DC与线段HG的数量关系,并写出证明过程;(3)如图3,若AB=4,D为AC的中点,将△ABD绕点B旋转得△A′BD′,连接A′C、A′D,当A′D+ A′C最小时,求S△A′BC.【分析】(1)通过作辅助线,构造直角三角形,借助解直角三角形求得线段的长度;(2)通过作辅助线,构造全等三角形,设AC=a,利用中位线定理,解直角三角形,用a的代数式表示CD和HG,即可得CD与HG的数量关系;(3)构造阿氏圆模型,利用两点之间线段最短,确定A'(4)的位置,继而求得相关三角形的面积.【解析】(1)过D作DG⊥BC,垂足是G,如图1:∵将BD绕点B顺时针旋转90°得到BE,∴∠EBD=90°,∵∠ABE=75°,∴∠ABD=15°,∵∠ABC=45°,∴∠DBC=30°,∴在直角△BDG中有DG==2,=,∵∠ACB=45°,∴在直角△DCG中,CG=DG=2,∴BC=BG+CG=,∴AC=BC=;(2)线段DC与线段HG的数量关系为:HG=,证明:延长CA,过E作EN垂直于CA的延长线,垂足是N,连接BN,ED,过G作GM⊥AB于M,如图:∴∠END=90°,由旋转可知∠EBD=90°,∴∠EDB=45°∴∠END=∠EBD=90°,∴E,B,D,N四点共圆,∴∠BNE=∠EDB=45°,∠NEB+∠BDN=180°∵∠BDC+∠BDN=180°,∠BCD=45°,∴∠BEN=∠BDC,∴∠BNE=45°=∠BCD,在△BEN和△BDC中,,∴△BEN≌△BDC(AAS),∴BN=BC,∵∠BAC=90°,在等腰△BNC中,由三线合一可知BA是CN的中线,∵∠BAC=∠END=90°,∴EN∥AB,∵A是CN的中点,∴F是EC的中点,∵G是BC的中点,∴FG是△BEC的中位线,∴FG∥BE,FG=BE,∵BE⊥BD,∴FG⊥BD,∵∠ABD=30°,∴∠BFG=60°,∵∠ABC=45°,∴∠BGF=75°,设AC=a,则AB=a,在Rt△ABD中,AD=,BD=BE=,∴FG=BE,∴FG=,∵GM⊥AB,∴△BGM是等腰三角形,∴MG=MB=,在Rt△MFG中,∠MFG=60°,∴MF=MG,∴MF=,∴BF=BM+MF=,在Rt△BFH中,∠BFG=60°,∴FH==a,∴HG=FG﹣FH=﹣a=,又∵CD==,∴=,∴HG=;(3)设AB=a,则BC=,取BC的中点N,连接A′D,A′C,A′N,连接DN,如图3,由旋转可知A′B=AB=a,∵==,==,∴,又∠A'BN=∠CBA',∴△A′BN∽△CBA′,∴=,∴A'N=A'C,根据旋转和两点之间线段最短可知,最小,即是A'D+A'N最小,此时D、A'、N共线,即A'在线段DN上,设此时A'落在A''处,过A''作A''F⊥AB于F,连接AA'',如图4,∵D,N分别是AC,BC的中点,∴DN是△ABC的中位线,∴DN∥AB,∵AB⊥AC,∴DN⊥AC,∵∠A=∠A''F A=∠A''DA=90°,∴四边形A''F AD是矩形,∴AF=A''D,A''F=AD=2,∵又A''B=AB=4,设AF=x,在直角三角形A''FB中,A''B2=A''F2+BF2,∴42=22+(4﹣x)2,解得x=.∴此时S△A''BC=S△ABC﹣S△AA''B﹣S△A''AC=AB•AC﹣AB•A''F﹣AC•A''D=×4×4﹣×4×2﹣×4×(4﹣2)=4﹣4.17.(2021•沙坪坝区校级模拟)如图1,在四边形ABCD中,AC交BD于点E,△ADE为等边三角形.(1)若点E为BD的中点,AD=4,CD=5,求△BCE的面积;(2)如图2,若BC=CD,点F为CD的中点,求证:AB=2AF;(3)如图3,若AB∥CD,∠BAD=90°,点P为四边形ABCD内一点,且∠APD=90°,连接BP,取BP的中点Q,连接CQ.当AB=6,AD=4,tan∠ABC=2时,求CQ+BQ的最小值.【分析】(1)如图1中,过点C作CH⊥BD于H,设EH=x.利用勾股定理构建方程求出x,即可解决问题.(2)如图2中,延长AF到G,使得AF=FG,连接DG,CG,延长GC交BD于T,过点C作CH⊥BD于H.想办法证明△AEB≌△ADG(SAS),可得结论.(3)如图3中,取AD的中点O,连接OP,OB,OC,取OB的中点J,连接QJ,CJ,过点C作CF⊥AB于F,在JB上取一点T,使得JT=,连接QT,TC.想办法证明△QJT∽△BJQ,推出===,推出QT=BQ,推出CQ+BQ=CQ+QT≥CT,求出CT,可得结论.【解答】(1)解:如图1中,过点C作CH⊥BD于H,设EH=x.。
“PA+k·PB”型的最值问题【问题背景】“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。
当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马问题”模型来处理,即可以转化为轴对称问题来处理。
而当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。
即点P在直线上运动和点P在圆上运动。
其中点P在直线上运动的类型称之为“胡不归”问题;点P在圆周上运动的类型称之为“阿氏圆”问题。
本文将分别从这两类入手与大家共同探究线段最值问题的解决方案。
【知识储备】线段最值问题常用原理:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;【模型初探】(一)点P在直线上运动“胡不归”问题如图1-1-1所示,已知sin∠MBN=k,点P为角∠MBN其中一边BM上的一个动点,点A在射线BM、BN的同侧,连接AP,则当“PA+k·PB”的值最小时,P点的位置如何确定?分析:本题的关键在于如何确定“k·PB”的大小,过点P作PQ⊥BN垂足为Q,则k·PB=PB·sin∠MBN=PQ,∴本题求“PA+k·PB”的最小值转化为求“PA+PQ”的最小值(如图1-1-2),即A、P、Q三点共线时最小(如图1-1-3),本题得解。
图1-1-1图1-1-2图1-1-3思考:当k值大于1时,“PA+k·PB”线段求和问题该如何转化呢?提取系数k即可哦!!!【数学故事】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。
由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。
邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…何以归”。
这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。
【模型初探】(二)点P 在圆上运动“阿氏圆”问题如图所示2-1-1,⊙O 的半径为r,点A 、B都在⊙O 外,P 为⊙O 上的动点,已知r=k ·OB.连接PA 、PB ,则当“PA+k ·PB ”的值最小时,P点的位置如何确图2-1-1 图2-1-2 图2-1-3分析:本题的关键在于如何确定“k ·PB ”的大小,(如图2-1-2)在线段OB 上截取OC 使OC=k ·r,则可说明△BPO 与△PCO 相似,即k ·PB=PC 。
∴本题求“PA+k ·PB ”的最小值转化为求“PA+PC ”的最小值,即A 、P 、C 三点共线时最小(如图2-1-3),本题得解。
【问题背景】阿氏圆又称阿波罗尼斯圆,已知平面上两点A 、B ,则所有满足PA=k ·PB (k ≠1)的点 P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
“阿氏圆”一般解题步骤:第一步:连接动点至圆心O(将系数不为1的线段的两个端点分别与圆心相连接),则连接OP、OB;第二步:计算出所连接的这两条线段OP、OB长度;第三步:计算这两条线段长度的比OP k=;OB第四步:在OB上取点C,使得OC OP=;OP OB第五步:连接AC,与圆O交点即为点P.①“胡不归”构造某角正弦值等于小于1系数起点构造所需角(k=sin ∠CAE )--------过终点作所构角边的垂线----------利用垂线段最短解决问题②“阿氏圆”构造共边共角型相似即:半径的平方=原有线段 构造线段构造△OPC∽△OBP,OP 2=OB·OC1.(胡不归问题)如图,四边形ABCD 是菱形,AB=4,且∠ABC=60°,M 为对角线BD (不含B 点)上任意一点,则AM+12BM 的最小值为.分析:如何将12BM 转化为其他线段呢?即本题k 值为12即转化为30°角的正弦值。
思考到这里,不难发现,只要作MN 垂直于BC , 则MN=12BM ,即AM+12BM 最小转化为AM+MN 最小,本题得解。
详解:如图,作AN ⊥于BC 垂足为N, ∵四边形ABCD 是菱形且∠ABC=60°, ∴∠DBC=30°, 即sin ∠DBC=12=MNBM, ∴12BM=MN ,∴AM+12BM=AM+MN ,即AM+12BM 的最小值为AN. 在RT △ABN 中,AN=AB ·sin ∠ABC=6=∴AM+12BM 的最小值为变式思考:(1)本题如要求“2AM+BM ”的最小值你会求吗?(2) 本题如要求“AM+BM+CM ”的最小值你会求吗? 答案:(1)2)BD=2(AM+1/2BM)2AM+BM2.(阿氏圆问题) 如图,点A 、B 在☉O 上,且OA=OB=6,且OA ⊥OB ,点C 是OA 的中点,点D 在OB 上,且OD=4,动点P 在☉O 上,则2PC PD +的最小值为__________. 分析:如何将2PC 转化为其他线段呢? 不难发现本题出现了中点,即2倍关系 就出现了。
套用“阿氏圆”模型:构造共边共角相似半径的平方=原有线段⨯构造线段 详解:∴连接OP,在射线OA 上截取AE=6. 即:2OP OC OE =⨯ ∴△OPC ∽△OEP∴2PE PC =∴2PC PD PE PD +=+,即P 、D 、E 三点共线最小. 在即2PC PD +的最小值为变式思考:(1)本题如要求“1PC PD 2+”的最小值你会求吗?(2) 本题如要求“3PC PD 2+”的最小值你会求吗?答案:(1)2)=1/2(2PC+PD)(构造子母相似三角形)【变式训练】(胡不归问题)1.如图,等腰△ABC 中,AB=AC=3,BC=2,BC 边上的高为AO ,点D 为射线AO 上一点,一动点P 从点A 出发,沿AD-DC 运动,动点P 在AD 上运动速度3个单位每秒,动点P 在CD 上运动的速度为1个单位每秒,则当AD=时,运动时间最短为 秒. 2.如图,在菱形ABCD 中,AB=6,且∠ABC=150°,点P 是对角线AC 上的一个动点,则PA+PB+PD 的最小值为 .答案:本题也可用“费马点”模型解决哦!!!(=1/3AD+CD)=PA+2PB=2(1/2PA+PB)【中考真题】(胡不归问题)1.(2016•徐州)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图像经过点A(-1,0),B(0,-3)、C(2,0),其中对称轴与x轴交于点D。
若P为y轴上的一个动点,连接PD,则PDPB+21的最小值为。
=sin30PB+PD 2.(2014.成都)如图,已知抛物线2)(4)y x x=+-与x轴从左至右依次交于点A、B,与y轴交于点C,经过点B的直线y x=D(-5,。
设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标为时,点M在整个运动过程中用时最少?,(-课外提升:2015日照、2015内江、2016随州多个城市均在压轴题考察了“胡不归”问题。
要好好专研哦!!!(=1/2FD+AF=sin30FD+AF)(胡不归问题变式)【变式训练】(阿氏圆问题)2(3).【拓展延伸】:已知扇形COD中,∠COD=90º,OC=6,OA=3,OB=5,点P是CD上一点,则2PA+PB的最小值为___________.13.2.如图,在直角坐标系中,以原点O为圆心作半径为4的圆交X轴正半轴于点A,点M坐标为(6,3),点N坐标为(8,0),点P在圆上运动,求1的最小值PM PN2为____GO构造______.3.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值为__________.答案:5(2题提示:构造三角形OPN相似于OQP)(3题提示:构造三角形OPC相似于OQP)【中考真题】(阿氏圆问题)(2017·甘肃兰州)如图,抛物线2y x bx c与直线AB交于4,4A,0,4B两点,直线1:62AC y x交y轴与点C,点E是直线AB上的动点,过点E作EF x轴交AC于点F,交抛物线于点G.(1)求抛物线2y x bx c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以,,,A E F H为顶点的四边形是矩形?求出此时点,E H 的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为E⊙上一动点,求12AM CM的最小值.答案:(1) y=﹣x2﹣2x+4;(2) G(﹣2,4);(3)①E(﹣2,0).H(0,﹣1);②2.提示:利用距离相等0-x=x-(-4)C写在最后:“胡不归”和“阿氏圆”问题都是一类解决最短距离问题,即“PA+k·PB”(k≠1的常数)型的最值问题。
两类问题所蕴含的都是数学的转化思想,即将k·PB这条线段的长度转化为某条具体线段PC的长度,进而根据“垂线段最短或两点之间线段最短”的原理构造最短距离。
不过两类问题的难点都在于如何对k值进行转化,“胡不归”需要构造某角的正弦值等于k(如k值>1则要先提取 k去构造某角的正弦值等于1k 或等于21kk)将k倍线段转化,再利用“垂线段最短”解决问题;“阿氏圆”问题则需构造共边共角型相似问题,始终抓住点在圆上这个重要信息,构造以半径为公共边的一组相似三角形,k值如大于1则将线段扩大相同的倍数取点,k值如小于1则将线段缩小相同的倍数取点利用,再“两点之间线段最短”解决问题。