双因素讲义方差分析
- 格式:ppt
- 大小:941.00 KB
- 文档页数:24
§5.3 双因素方差分析I 无交互作用的双因素方差分析(1) 数学模型 现在考虑影响试验指标的因素有两个:A, B 。
因素A 有水平r 个;有水平s 个;因素A, B 的各种组合水平均只作一次试验;两因素之间无交互作用。
数据结构表假设:(1*) {:1;1}ij Y i r j s ≤≤≤≤独立;(2*) 2~(,)ij ij Y N μσ,即具有相同的方差; (3*) ij ij ij Y e μ=+,其中 2~(0,)ij e N σ,且{}ij e 独立; 数学模型: ij i j ij ij Y e μαβγ=++++ , 其中:111()r s ij i j rs μμ-===∑∑—总平均值; 11s i ij j s μμ-⋅==∑; 11r j ij i r μμ-⋅==∑;i i αμμ⋅=-—因素A 在水平Ai 下对试验指标的效应值;j j βμμ⋅=-—因素B 在水平Bj 下对试验指标的效应值;s B2rA12122212s s r r rs Y Y Y Y Y2r Y ⋅⋅12..s Y Y Y ⋅⋅⋅10r i i α==∑; 10s j j β==∑;ij ij i i γμμαβ=---—因素A, B 的交互效应值; {}ij e —随机部分,假定:独立同正态分布;注: “无交互作用”等价于:0ij γ=,即ij i i μμαβ=++;(2) 方差分析(i) 假设检验问题 两种因素分别进行检验:0112:0r H ααα====即因素A 对试验指标影响不显著;0212:0s H βββ====即因素B 对试验指标影响不显著;注:当01H 和02H 成立时,,(1;1)ij i r j s μμ=≤≤≤≤.(ii) 构造F-统计量及否定域 设()111r siji j Y rs Y-===∑∑;11si ij j Y s Y -⋅==∑;11rj ij i Y r Y -⋅==∑;2211()rsT ij i j S Y Y ===-∑∑;221()rA i i S s Y Y ⋅==-∑;221()sB j j S r Y Y ⋅==-∑;2211()rsE ij i j i j S Y Y Y Y ⋅⋅===--+∑∑;注:注意,2211()rsE ij i j i j S Y Y Y Y ⋅⋅===--+∑∑211()r sij ij i i j j i j e e e e μμμμ⋅⋅⋅⋅===+----++∑∑ 211[()()]rsij i j ij i j i j e e e e μμμμ⋅⋅⋅⋅===--++--+∑∑211()rsij i j i j e e e e ⋅⋅===--+∑∑.这里利用了“无交互效应”的假设条件:0ij ij i j γμμμμ⋅⋅=--+=.由此可见,2E S 与α⋅及β⋅无关,即与假设01H 和02H 是否成立无关。