华师版七年级数学下册第六章一元一次方程
- 格式:doc
- 大小:36.00 KB
- 文档页数:3
第6章一元一次方程教案6.1从实际问题到方程教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是一些方程的解。
重点、难点1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程一、复习提问小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?例如:一本笔记本1.2元。
小红有6元钱,那么她最多能买到几本这样的笔记本呢?解:设小红能买到工本笔记本,那么根据题意,得1.2某=6因为1.2某5=6,所以小红能买到5本笔记本。
二、新授:我们再来看下面一个例子:问题1:学校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?问:你能解决这个问题吗?有哪些方法?(让学生思考后,回答,教师再作讲评)算术法:(328-64)÷44=264÷44=6(辆)列方程解应用题:设需要租用某辆客车,那么这些客车共可乘44某人,加上乘坐校车的64人,就是全体师生328人,可得。
44某+64=328(1)解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。
)问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”小敏同学很快说出了答案。
“三年”。
他是这样算的:1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一、3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一、你能否用方程的方法来解呢?通过分析,列出方程:13+某=1(45+某)(2)3问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。
华师版七年级下册数学知识点总结七年级数学下期期末复提纲第六章一元一次方程一、基本概念一)方程的变形法则法则1:方程两边都加上或减去同一个数,方程的解不变。
例如:在方程7-3x=4两边都加上7,得到新方程:-3x+14=11.在方程6x=-2x-6两边都加上4x,得到新方程:10x=-6.移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x-5=7移项得:x=7+5即x=122)将方程4x=3x-4移项得:x=-4法则2:方程两边都乘以或除以同一个数,方程的解不变。
例如:(1)将方程-5x=2两边都除以-5得:x=252)将方程x=2y两边都乘以3,得到新方程:3x=6y这里的变形通常称为“将未知数的系数化为1”。
注意:1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求解方程的过程,叫做解方程。
二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x-3x+1=x-1、2x+y=1-3y、x-1=2就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0)3.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1.注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
2)“去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。
华师版七年级数学下册第六章一元一次方程
§6.2.2解一元一次方程
第五课时
沙河中学付志祥
一教学目的:
1.进一步理解列一元一次方程解简单应用题的方法和步骤。
2.会列一元一次方程解简单应用题。
渗透数学建模的思想方法。
二、教学重难点:
教学重点:弄清应用题题意列出方程。
教学难点:弄清应用题题意列出方程。
三、教学过程:
(一)复习
利用方程解实际问题的关键是什么?
(二)新授
例:教材p11例7
学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参加了搬砖?
分析:1.题目中有哪些已知量?
(1)参加搬砖的初一同学和其他年级同学共65名。
(2)初一同学每人搬6块,其他年级同学每人搬8块。
(3)初一和其他年级同学一共搬了1400块。
2.求什么?
初一同学有多少人参加搬砖?
3.等量关系是什么?
初一同学搬砖的块数十其他年级同学的搬砖数=1400
(三)巩固练习:
教科书第12页练习2、3
师:对第2题,鼓励学生用自己的语言进行讨论,交流
对第3题,引导学生感受不同的实际问题,建立相同的数学
四、小结:
列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,得到方程。
进一步体会将实际问题转化成数学模型的实质。
在很多实际问题中,都存在一些等量关系,因此,我们往往可以借助列方程或方程组的方法来处理这些问题。
这中问题的过程可以进一步概括为:
问题→方程(组)→解答
处理实际问题的方法往往是多种多样的,应该根据具体问题灵活选用。
五、作业:
教材p12:习题6.2.2 5、6题。
(。