第1-3-流体的运动1(3)
- 格式:ppt
- 大小:1.21 MB
- 文档页数:21
流体力学 _第二版 李玉柱 习题解答第一章绪论1—1 解:5521.87510 1.6110/1.165m sμυρ--⨯===⨯1—2 解:63992.20.661100.65610Pa s μρυ--==⨯⨯=⨯1—3 解:设油层速度呈直线分布10.1200.005dV Pa dy τμ==⨯= 1-4 解:木板沿斜面匀速下滑,作用在木板上的重力G 在斜面的分力与阻力平衡,即0sin3059.810.524.53n T G N ==⨯⨯=由dV T Adyμ=224.530.0010.114/0.40.60.9T dy N s m A dV μ⨯===⨯⨯1-5 解:上下盘中流速分布近似为直线分布,即dV Vdy δ=在半径r 处且切向速度为r μω=切应力为432dV V rdy y d ωτμμμδπμωδ===转动上盘所需力矩为M=1d M dA τ=⎰⎰=20(2)drdr r τπ⎰=2202d rr dr ωμπδ⎰=432d πμωδ1-6解:由力的平衡条件 G A τ=而dVdrτμ= 0.046/dV m s =()0.150.1492/20.00025dr =-=dV G Adrμ=90.000250.6940.0460.150.1495G dr Pa s dV A μπ⨯===⨯⨯⨯1-7解:油层与轴承接触处V=0, 与轴接触处速度等于轴的转速,即440.362003.77/60600.73 3.770.361 1.353102.310dnV m sVT A dl N πππτμπδ-⨯⨯===⨯⨯⨯⨯====⨯⨯克服轴承摩擦所消耗的功率为41.35310 3.7751.02N M TV kWω===⨯⨯=1-8解:/dVdT Vα=30.00045500.02250.02250.0225100.225dVdT V dV V m α==⨯===⨯=或,由dVdT Vα=积分得 ()()0000.000455030ln ln 1010.2310.51.05t t V V t t VV ee m dαα-⨯-=-====1-9解:法一: 5atm90.53810β-=⨯10atm90.53610β-=⨯90.53710β-=⨯d dpρρβ=d d ρβρρ==0.537 x 10-9x (10-5) x98.07 x 103= 0.026%法二:d d ρβρρ= ,积分得()()()93000.5371010598.07100ln ln 1.000260.026%p p p p e e βρρβρρρρρ--⨯⨯-⨯⨯-=-===-=1-10 解:水在玻璃管中上升高度 h =29.82.98mm d= 水银在玻璃管中下降的高度 H = 错误!未找到引用源。
第1章 流体力学基础1.1 主要公式1.1.1牛顿内摩擦定律dydu μτ±= (1-1)τ-切应力,Pa ;dydu-速度梯度,s -1; μ-流体动力粘度,Pa ·s1.1.2 稳定流动总能量方程式 单位质量流体的能量平衡式22222222211111u gZ v p e w q u gZ v p e +++=+++++ (J/kg)(1-2a)2222222111u gZ h w q u gZ h ++=++++ (J/kg)(1-2b)22u Z g h w q ∆+∆+∆=+ (J/kg) (1-2c)式中 Z —某一液面距基准面的高度,m ;u —流体流动速度,m/s ;e —单位质量的流体所具有的内能,J/kg ; p —流体绝对压力,Pa ; v —流体的比体积,m 3/kg ; ρ—流体的密度,kg/m 3;w —单位质量的流体所具有的功,J/kg ; q —单位质量的流体所具有的热量,J/kg ; h —单位质量的流体所具有的焓,J/kg 。
式中以下标1表示的项为体系进口截面上流体的能量,下标2表示的项为体系出口截面上流体的能量。
1.1.3 不可压缩理想流体的稳定流动与柏努利(Bernoulli )方程2222222111u p gZ u p gZ ++=++ρρ(J/kg) (1-3a)gu g p Z g u p Z 22g 22222111++=++ρρ(m) (1-3b)2222222111u p gZ u p gZ ρρρρ++=++ (N/m 2) (1-3c)式(1-3a)、式(1-3b)和式(1-3c)为不可压缩理想流体稳定流动能量方程的三种表达式,称为柏努利方程式。
式中各项代表单位数量的流体所具有的位能、压力能和动能,式(1-3a)以每1kg 质量的流体所具有的能量来表示;式(1-3b)以每1N 重量的流体所具有的能量来表示;式(1-3c)以每1m 3体积的流体所具有的能量来表示。
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。