3第三章_流体运动学
- 格式:doc
- 大小:515.00 KB
- 文档页数:7
第三章流体运动学基础一、学习导引1、流体的速度流体的速度是一个矢量,记作V 。
x , y , z 方向的速度分量分别记作u , v , w ,即V ui vj wk ,流场的速度分布与空间坐标 x ,y ,z 以及时间t 有关,即u v r cos v sin ,v v r sin v cos v r u cos vsin ,v usinvcos3、连续性方程工程上常用的不可压缩流体的一元总流连续性方程为V 宀 V 2 A 2微分形式的连续性方程为_( u) ( V) ( w) 0t x yz对于不可压缩流体,连续性方程为V V(x,y,z,t)流体质点的加速度等于质点速度对时间的变化率,即dV V V dx V dy V dz adt t x dt y dtzdtt xyz投影形式:uuu ua x uv-w —— tx y z vv v v a y u — v- — w — tx y z www w a zuvw txy z2、流线微分方程在直角坐标中,流线方程为dx dy dzuv w在柱坐标中,流线方程为dr rddzv r vv zu —— v —— w 对于平面流动,这两种坐标系的速度分量的关系分别为u 12i 2j从而3.1 度, 3.2u v x yw0 z二、习题详解流体在等截面直圆管内作层流流动,过流断面上的流速分布为2U Umax 1—式中R 表示圆管的内半径,U max 和U 分别表示断面上的最大流速和断面上的分布速 R 。
求断面平均流速。
u ,则Ru 2 r dr0 r解:设管中平均速度为 R 2—Umax2流体在等截面直圆管中作湍流流动,过流断面上的流速分布为U U max式中n 为常数,R 、U max 及U 的意义与上题相同。
求平均流速;若n=7,平均流速为多少?解: U当n 7时:3.3已知速度场为U (2x 2y)i ( y x)j (x z)k求:(2,4,2 )点的速度(大小和方向)。
流体力学辅导材料3:第3章流体运动学【教学基本要求】1.了解描述流体运动的两种方法。
了解迹线与流线的概念。
掌握欧拉法质点加速度的表达式。
2.理解总流、过流断面、流量、断面平均流速的概念;理解定常流与非定常流、均匀流与非均匀流、渐变流与急变流、有压流与无压流。
3.熟练掌握总流的连续性方程。
4.理解无旋流与有旋流,掌握其判别方法。
5. 掌握流函数、速度势函数与速度的关系。
知道流网法、势流叠加法解平面势流的原理。
【学习重点】1.流线与迹线;质点加速度的欧拉表述法。
2.总流的连续性方程。
3.无旋流与有旋流的判别。
4.流函数、速度势与流速的关系。
【内容提要和学习指导】3.1 流动描述3.1.1 描述流动的两种方法描述流动的方法有拉格朗日法和欧拉法。
1. 拉格朗日(Lagrange)法:拉格朗日法以研究个别流体质点的运动为基础,通过对每个流体质点运动规律的研究来获得整个流体的运动规律。
这种方法又称为质点系法。
拉格朗日法的基本特点是追踪单个质点的运动。
此法概念明确,但复杂。
一般不采用拉格朗日法。
2. 欧拉(Euler)法:欧拉法是以考察不同流体质点通过固定的空间点的运动情况来了解整个流动空间内的流动情况,即着眼于研究各种运动要素的分布场。
这种方法又叫做流场法。
欧拉法中,流场中任何一个运动要素可以表示为空间坐标和时间的函数。
例如,在直角坐标系中,流速v是随空间坐标)yx和时间t而变化的,称为流速场。
,(z,用欧拉法描述流体运动时,质点加速度等于时变加速度和位变加速度之和,表达式为:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==z u u yu u xu u tu dtdu a z u u y u u x u u t u dt du a z u u y u u x u u t u dt du a z z z yz xz zy y z y y y x y yy x zx y x x x xx (3-6)3.1.2 迹线与流线在研究流动时,常用某些线簇图像表示流动情况。
第3章流体运动学选择题:.2dr v【3.1】用欧拉法表示流体质点的加速度a等于:(a)dt2;(b)t;(c)(v )v;v(V )v(d)t odv va —— v解:用欧拉法表示的流体质点的加速度为dt t v(d)【3.2】恒定流是:(a)流动随时间按一定规律变化;(b)各空间点上的运动要素不随时间变化;(c)各过流断面的速度分布相同;(d )迁移加速度为零。
解:恒定流是指用欧拉法来观察流体的运动,在任何固定的空间点若流体质点的所有物理量皆不随时间而变化的流动•(b)【3.3】一元流动限于:(a )流线是直线;(b )速度分布按直线变化;(c)运动参数是一个空间坐标和时间变量的函数;(d)运动参数不随时间变化的流动。
解:一维流动指流动参数可简化成一个空间坐标的函数。
(c)【3.4】均匀流是:(a)当地加速度为零;(b )迁移加速度为零;(c)向心加速度为零;(d)合加速度为零。
解:按欧拉法流体质点的加速度由当地加速度和变位加速度(亦称迁移加速度)这两部分组成,若变位加速度等于零,称为均匀流动(b)【3.5】无旋运动限于:(a)流线是直线的流动;(b)迹线是直线的流动;(c)微团无旋转的流动;(d )恒定流动。
解:无旋运动也称势流,是指流体微团作无旋转的流动,或旋度等于零的流动。
(d )【3.6 ]变直径管,直径d i 320mm, d2 160mm,流速V i 1.5m/s。
V2 为:(a )3m/s ; ( b) 4m/s ; ( c)6m/s ; ( d ) 9m/s。
V| — d;V2— d;解:按连续性方程,4 4 ,故V V虫1.5 320 6m/sd2160【3.7】平面流动具有流函数的条件是:(a)理想流体;(b)无旋流动;(c)具有流速势;(d)满足连续性。
解:平面流动只要满足连续方程,则流函数是存在的。
(d)【3.8】恒定流动中,流体质点的加速度:(a)等于零;(b)等于常数;(c)随时间变化而变化;(d)与时间无关。
第三章 流体运动学3-1 已知流体质点的运动,由拉格朗日变数表示为 x =ae kt,y =be -kt,z =c ,式中k 是不为零的常数。
试求流体质点的迹线、速度和加速度。
解:(1)由题给条件知,流体质点在z=c 的平面上运动,消去时间t 后,得xy =ab上式表示流体质点的迹线是一双曲线族:对于某一给定的(a ,b ),则为一确定的双曲线。
(2)0kt kt x y z x y z u kae u kbe u t t t-∂∂∂====-==∂∂∂,, (3)220y ktkt x z x y z u u u a k ae a k be a t t t-∂∂∂======∂∂∂,, 3-2 已知流体运动,由欧拉变数表示为u x =kx ,u y =-ky ,u z =0,式中k 是不为零的常数。
试求流场的加速度。
解:2d d x x x x x x x y z u u u u ua u u u k x t t x y z ∂∂∂∂==+++=∂∂∂∂ 2d d y y u a k y t ==,d 0d z z ua t==3-3 已知u x =yzt ,u y =zxt ,u z =0,试求t =1时流体质点在(1,2,1)处的加速度。
解:2()3m/s x x x x x x y z u u u ua u u u yz zxt zt t x y z ∂∂∂∂=+++=+=∂∂∂∂ 2()3m/s y y y y y x y z u u u ua u u u zx yzt zt t x y z ∂∂∂∂=+++=+=∂∂∂∂0z z z z z x y z u u u ua u u u t x y z∂∂∂∂=+++=∂∂∂∂3-4 已知平面不可压缩液体的流速分量为u x =1-y ,u y =t 。
试求(1)t =0时,过(0,0)点的迹线方程;(2)t =1时,过(0,0)点的流线方程。
解:(1)迹线的微分方程式为d d d d d d d d d d y x y x yx y x yt t t y u t t t u u u u ======,,,, 积分上式得:122C t y +=,当t=0时,y=0,C 1=0,所以22t y =(1)2d d (1)d (1)d 2x t x u t y t t ==-=-,积分上式得:236C t t x +-=当t =0时,x =0,C 2=0,所以63t t x -=(2)消去(1)、(2)两式中的t,得x =有理化后得 023492223=-+-x y y y(2)流线的微分方程式为d d d d d (1)d 1===--,即,x y x y x y t x y y u u y t,积分上式得 C y y tx +-=)2(2当t =1时,x =y =0,C =0,所以可得:)2(12y y t x -=(为非恒定流) 3-5 已知u x =x +t ,u y =-y +t ,u z =0,试求t =2时,通过点A (-1,-1)的流线,并与例3-3相比较。
解:由例3-3可得:()()x t y t C +-+=当t =2,x =-1,y =-1,C =3。
因此,通过点A (-1,-1)的流线为 3)2)(2(=+-+y x上式不同于例3-3,即当t =0时通过A 点的流线为xy =1,说明不同时刻的流线不同。
3-6 试求例3-6流体运动的流线方程和流体质点通过点A (1,0)流线的形状。
解:例3-6流体运动如题3-6图所示 22yx ky u x +-=,22y x kxu y += 流线方程:2222d ()d ()x x y y x y ky kx -++=2222d ()d ()0kx x x y ky y x y +++= 2222d()()02k x y x y +?=积分,得122)(2C y x k =+,222)(C y x =+圆心(0,0),半径2C R =。
当x =1,y =0,代入上式得C 2=1。
(22y x +)=1, 为一圆,因是恒定流,不同时间为同一圆。
3-7 已知22y x kyt u x +-=,22y x kxtu y+=,z u =0,式中k 是不为零的常数。
试求:(1)流线方程,(2)t =1时,通过点A (1,0)流线的形状,(3)将求得的流线方程与习题3-6求得的流线方程相比较,它们有什么异同。
解:z u =0,为平面(二维)流动。
(1)流线方程 d d x y x y u u = 将x u 、y u 代入上式,得 2222()d d x y x y x y kyt kxt-++= 2222()d ()d x y x kxtx y y kyt -+?+?2222()d ()d 0x y kxt x x y kyt y +++=22()(d d )0kt x y x xy y +?=,22221()d()02kt x y x y ++=积分得221()2kt x y C +=,流线方程一般形式:222()x y t C +=。
(2)t=1,x=1,y=0,代入上式,得C 2=1;流线为22y x +=1,流线的形状为一圆。
题3-6图(3)因是非恒定流,不同时间为不同的圆,如t=2,x=1,y=0,C 2=2,222(2)x y +=3-8 试证明下列不可压缩均质流体运动中,哪些满足连续性方程,哪些不满足连续性方程。
(1)u x =-ky ,u y =kx ,u z =0;(2)u x =kx ,u y =-ky ,u z =0;(3)u x =22yx y+-, u y =22y x x+,u z =0;(4)u x =ay ,u y =u z =0;(5)u x =4,u y = u z =0;(6)u x =1,u y =2;(7)u x =4x ,u y =0;(8)u x =4xy ,u y =0。
解:平面流动中,不可压缩均质流体的连续性方程为0=∂∂+∂∂yu x u yx (1)0+0=0;(2)k -k =0;(3)0)(2)(2222222=+-+y x xyy x xy ;(4)0+0=0; (5)0+0=0,(6)0+0=0;(7)4+0≠0,(8)4y +0≠0。
(1)~(6)的流体运动满足连续性方程;(7)、(8)的流体运动不满足连续性方程,实际上流动是不能实现的。
3-9 已知水平圆管过流断面上的流速分布为2max 01()r u u r 轾犏=-犏臌,u max 为管轴处最大流速,r 0为圆管半径,r 为点流速u 距管轴的径距。
试求断面平均速度v 。
解:02max 20001112d π⎡⎤⎛⎫⎢⎥==- ⎪π⎢⎥⎝⎭⎣⎦⎰⎰r A r v udA u r r A r r0222max max 00max 2220000022πd d 0.5ππ24⎡⎤⎡⎤π=-=-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰r r u u r r r r r r r u r r r 3-10 已知水平圆管过流断面上的流速分布为71max )(r yu u x =,u max 为管轴处最大流速,0r 为圆管半径,y 为点流速u x 距管壁的距离。
试求断面平均流速v 。
解:017max00d 2π()()d r xAyQ u A u r y y r ==-⎰⎰087157max 01702π77815ru r y y r =-2max 049π60u r = 2max 0max max 2049149π0.8176060Q v u r u u A r p ====。
3-11 设一有压管流经圆管进入圆锥形的收敛管嘴,如图所示。
已知圆管直径d A =0.2m ,流量Q =0.014m 3/s ;d B =0.1m 。
试求经过圆管内点A 和收敛管嘴内点B 的过流断面的平均流速v A 、v B 。
注:经过点B 的过流断面面积,可近似地视为球缺或球冠表面积,为2πRh (不包括底面面积)。
解:Av=AQA=22440.014m/s0.45m/sππ0.2⨯==⨯AQd经过点B的过流断面面积,可近似地视为球缺面积A B=2πRh,式中h=(0.05-0.05cos450)m =0.015m,R=0.05m。
因此0.014m/s 2.97m/s20.050.015BBQvAπ===⨯⨯3-12 送风管的断面面积为50 cm×50cm,通过a、b、c、d四个送风口向室内输送空气,如图所示。
已知送风口断面面积均为40 cm×40cm,气体平均速度均为5m/s,试求通过送风管过流断面1-1、2-2、3-3的流量和流速。
解:Q=vA=5330.40.4m/s0.8m/s⨯⨯=331330.8m/s 2.4m/sQ Q==⨯=,1112.4m/s9.6m/s0.50.5QvA===⨯332220.8m/s 1.6m/sQ Q==⨯=,2221.6m/s 6.4m/s0.50.5QvA===⨯330.8m/sQ Q==,3330.8m/s 3.2m/s0.50.5QvA===⨯3-13 蒸汽管道如图所示。
已知蒸汽干管前段的直径d0=50mm,流速v0 =25m/s,蒸汽密度ρ0 =2.62kg/m3;后段的直径d1=45mm,蒸汽密度ρ1 =2.24kg/m3。
接出的支管直径d2 =40mm,蒸汽密度ρ2 =2.30kg/m3;试求分叉后的两管末端的断面平均流速ν1、ν2为多大,才能保证该两管的质量流量相等。
解:000111222v A v A v Aρρρ=+(1)111222v A v Aρρ=(2)联立解(1)、(2)两式,可得20012112.62250.05m/s18.05m/s22 2.240.045v AvAρρ⨯⨯===⨯⨯200022222.62250.05m/s22.25m/s22 2.30.04v AvAρρ⨯⨯===⨯⨯3-14 空气以标准状态(温度t0 =15℃,密度ρ0 =1.225 kg/m3,压强p0 =1.013×105Pa)进入压气机,流量Q v为20m3/min;流出时温度t为60℃,绝对压强p为800×103Pa;如果压气机出口处流速ν限制为20m/s。
试求压气机的出口管径d。
解:由状态方程000p PT Tr r=,计算压气机出口处的气体密度ρ,即3330050(27315)800101.225kg/m8.37kg/m (27360) 1.01310T p Tp r r +创==?+创由连续性方程求出口管径d ,因 204v Q v d p r r =,044 1.22520m 0.056m π8.372060v Q d v r r p 创===创?。