圆二色谱和旋光谱概述
- 格式:pdf
- 大小:4.42 MB
- 文档页数:39
圆二色谱一、圆二色谱圆二色光谱(简称CD)是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单、较准确的方法。
它可以在溶液状态下测定,较接近其生理状态。
而且测定方法快速简便,对构象变化灵敏,所以它是目前研究蛋白质二级结构的主要手段之一,并已广泛应用于蛋白质的构象研究中。
二、圆二色谱的基本原理光是横电磁波,是一种在各个方向上振动的射线。
其电场矢量 E 与磁场矢量H 相互垂直,且与光波传播方向垂直。
由于产生感光作用的主要是电场矢量,一般就将电场矢量作为光波的振动矢量。
光波电场矢量与传播方向所组成的平面称为光波的振动面。
若此振动面不随时间变化,这束光就称为平面偏振光,其振动面即称为偏振面。
平面偏振光可分解为振幅、频率相同,旋转方向相反的两圆偏振光。
其中电矢量以顺时针方向旋转的称为右旋圆偏振光,其中以逆时针方向旋转的称为左旋圆偏振光。
两束振幅、频率相同,旋转方向相反的偏振光也可以合成为一束平面偏振光。
如果两束偏振光的振幅(强度) 不相同,则合成的将是一束椭圆偏振光。
光学活性物质对左、右旋圆偏振光的吸收率不同,其光吸收的差值ΔA ( Al -Ad) 称为该物质的圆二色性(circular dichroism,简写作CD) 。
圆二色性的存在使通过该物质传播的平面偏振光变为椭圆偏振光,且只在发生吸收的波长处才能观察到。
所形成的椭圆的椭圆率θ为:θ= tg-1 短轴/长轴根据Lambert-Beer 定律可证明椭圆率近似地为:θ= 0. 576lc (εl-εd) = 0. 576lcΔε公式中l 为介质厚度, c 为光活性物质的浓度,εl 及εd分别为物质对左旋及右旋圆偏振光的吸收系数。
测量不同波长下的θ(或Δε) 值与波长λ之间的关系曲线,即圆二色光谱曲线。
在此光谱曲线中,如果所测定的物质没有特征吸收,则其Δε值很小,即得不到特征的圆二色光谱。
当εl >ε d 时,得到的是一个正的圆二色光谱曲线,即被测物质为右旋,如果εl <ε d ,则得到一个负的圆二色光谱曲线,即被测物质为左旋。
圆二色谱和旋光谱概述圆二色谱(circular dichroism spectroscopy,CD)是一种测量分子对具有不同方向旋转的圆偏振光吸收差异的技术。
它通过测量由物质吸收的左旋和右旋圆偏振光的差异,来研究物质的结构和构象。
圆二色谱的基本原理是Kirchhoff定律的直接应用,即分子的吸收光谱是由对电磁场的响应所导致的。
当吸收的光谱与光的旋转相耦合时,出现左旋和右旋圆二色效应。
圆二色谱实验通常通过使用圆偏振光源、样品和检测器组成。
光源通常是通过一个线性偏振器和一个相位均匀的偏振光源来产生的。
样品通常是通过溶液或薄膜的形式存在。
检测器用于测量透射或反射样品的圆二色信号。
测量得到的数据可以表示为贝尔系数,即偏振光旋转的绝对角度。
根据光谱的形状和幅度,可以分析物质的构象和结构。
旋光谱(optical rotation spectroscopy)是测量物质在其中一种溶剂中的光学旋转角度的技术。
它根据物质对线性偏振光的旋转效应研究物质的手性性质。
旋光谱原理是基于贝尔定律,该定律描述一个物质中的旋转既取决于溶液中物质的浓度,又取决于物质本身的旋转率。
旋光谱实验通常使用旋光仪进行测量。
旋光仪由一个光源、走样器、检测器和读数装置组成。
在实验中,光线通过一系列光学元件(如偏振器和波片)来形成线偏振光,然后通过待测物质样品,最后到达检测器。
读数装置可测量旋转对应的光强度变化,并通过校准数据来计算旋转角度。
圆二色谱和旋光谱在许多领域有着广泛的应用。
在有机化学中,它们被广泛用于研究手性分子、构象分析和反应动力学等。
在生物化学和生物物理学中,它们被用于研究蛋白质和核酸的结构和功能。
此外,圆二色谱和旋光谱还被应用于药物发现、金属络合物分析和环境监测等领域。
总之,圆二色谱和旋光谱是两种常用的分析技术,用于研究物质的光学性质和结构。
它们的基本原理和实验方法都是通过测量物质对光的旋转效应来实现的。
这些技术广泛应用于化学、生物学和医药等领域,为科学家研究和理解物质的性质和行为提供了重要工具。
圆二色光谱(简称CD)是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单、较准确的方法。
它可以在溶液状态下测定,较接近其生理状态。
而且测定方法快速简便,对构象变化灵敏,所以它是目前研究蛋白质二级结构的主要手段之一,并已广泛应用于蛋白质的构象研究中。
一.简介圆二色谱是用于推断非对称分子的构型和构象的一种旋光光谱。
光学活性物质对组成平面偏振光的左旋和右旋圆偏振光的吸收系数(ε)是不相等的,εL≠εR,即具有圆二色性。
如果以不同波长的平面偏振光的波长λ为横坐标,以吸收系数之差Δε=εL-εR为纵坐标作图,得到的图谱即是圆二色光谱,简称CD。
如果某手性化合物在紫外可见区域有吸收,就可以得到具有特征的圆二色光谱。
由于εL≠εR,透射光不再是平面偏振光,而是椭圆偏振光,摩尔椭圆度[θ]与Δε的关系为:[θ]=3300Δε。
圆二色谱也可以摩尔椭圆度为纵坐标,以波长为横坐标作图。
由于△ε有正值和负值之分,所以圆二色谱也有呈峰的正性圆二色谱和呈谷的负性圆二色谱。
在紫外可见光区域测定圆二色谱与旋光谱,其目的是推断有机化合物的构型和构象。
二.样品要求1、样品必须保持一定的纯度不含光吸收的杂质,溶剂必须在测定波长没有吸收干扰;样品能完全溶解在溶剂中, 形成均一透明的溶液。
2、氮气流量的控制3、缓冲液、溶剂要求与池子选择:缓冲液和溶剂在配制溶液前要做单独的检查,看是否在测定波长范围内有吸收干扰,看是否形成沉淀和胶状;在蛋白质测量中,经常选择透明性极好的磷酸盐作为缓冲体系。
4样品浓度与池子选择样品不同,测定的圆二色光谱范围不同,对池子大小(光径)的选择和浓度的要求也不一样。
蛋白质CD光谱测量一般在相对较稀的溶液中进行。
三.谱带宽度选为1 nm。
对于高分辨率测量,要用较窄的狭缝宽度,此时光电倍增管的电压较高,谱的信噪比差。
虽然对于正常测量最佳谱带宽度是1~2 nm,但是在下列情况下要牺牲分辨率而需要较宽的狭缝宽度。
圆二色谱总结圆二色谱是一种常用于研究分子结构和性质的重要工具,特别是在物理、化学、生物学以及材料科学等领域。
它利用偏振光通过样品时产生的圆偏振光变化来测量样品的光谱特性。
以下是关于圆二色谱的一些总结:1.圆二色谱的定义和原理圆二色谱(Circular Dichroism,CD)是一种测量左旋和右旋偏振光通过样品后的透过率差别的技术。
当偏振光通过一个含有手性分子的样品时,它会发生旋光,即偏振面会旋转。
通过测量旋光度,可以确定分子的手性及其结构。
2.圆二色谱的应用圆二色谱被广泛应用于各种科学领域。
例如,在生物学中,CD被用于研究蛋白质和DNA的结构和动力学。
在化学中,它被用于研究有机化合物的手性和分子结构。
在材料科学中,CD被用于研究纳米材料和功能材料的光学特性。
3.圆二色谱的优势和局限性圆二色谱有以下几个优势:(1)灵敏度高:可以检测到样品中微小的旋光度变化,从而可以研究分子结构和动力学。
(2)分辨率高:可以区分不同的手性分子,这对于研究分子结构和手性之间的关系非常重要。
(3)无损检测:不会对样品造成破坏,因此可以用于研究生物样品和其他易损坏的样品。
然而,圆二色谱也存在一些局限性:(1)需要大量的样品:通常需要大量的样品才能获得可靠的CD谱图。
(2)需要专业的技术人员:需要进行CD测量的实验需要专业的技术人员进行操作和维护。
4.圆二色谱的发展趋势近年来,圆二色谱技术不断发展,出现了许多新的技术和发展趋势,如:(1)高精度CD测量技术:随着技术的进步,现在可以获得更高的测量精度和分辨率,从而能够更深入地研究分子的结构和动力学。
(2)CD与其他谱图的联用技术:可以将CD与其他谱图技术联用,如红外光谱、核磁共振谱等,从而可以从多个角度研究分子的结构和性质。
(3)CD在生物医学中的应用:CD可以用于研究生物分子的结构和动力学,从而可以应用于生物医学领域,如药物筛选、疾病诊断和治疗等。
(4)CD在材料科学中的应用:通过CD可以研究纳米材料、功能材料的光学特性,为材料科学的发展提供新的工具。