圆二色光谱实验报告
- 格式:docx
- 大小:64.92 KB
- 文档页数:4
圆二色光谱分析法引言五十年代初,生物学研究从宏观领域深入到微观领域,开创了分子生物学的新时代。
随着研究的不断深入和发展,生物学已发展成最活跃的学科之一。
手性(Chirality)是物质结构中的重要特征.即具有不能重叠的三维镜像对映异构体,它们的分子式完全相同,但其中原子或原子基团在空间的配置不同,互为镜像。
凡手性分子都具有光学活性,即可使偏振光的振动面发生旋转。
生物基础分子一般都具有手性,也都具有光学活性。
在自然界中,氨基酸有L型和D型两种对映异构体,组成蛋白质的20种氨基酸,除最简单的甘氨酸不具有手性外,其余都是L型的[1]。
手性分子都具有光学活性。
当单色左旋与右旋的圆偏振光通过某一种手性样品时,该样品对左、右旋圆偏振光的吸收不同,这叫做圆二色性(Circular Dichroism)。
其差值△A=△A L-△A R称为圆二色值,按波长扫描就得到了圆二色谱(CD谱)。
CD谱是特殊的吸收谱,它比一般的吸收谱弱几个量级,但由于它对分子结构十分敏感,因此近十几年来,CD已成为研究分子构型(象)和分子间相互作用的最重要的光谱实验之一。
利用CD研究生物大分子和药物分子,具有重要的科学意义和实用价值[2,3]。
一、蛋白质的圆二色性蛋白质是由氨基酸通过肽键连接而成的具有特定结构的生物大分子。
蛋白质一般有一级结构、二级结构、超二级结构、结构域、三级结构和四级结构几个结构层次[4-6]。
在蛋白质或多肽中,主要的光活性基团是肽链骨架中的肽键、芳香氨基酸残基及二硫桥键。
当平面圆偏振光通过这些光活性的生色基团时,光活性中心对平面圆偏振光中的左、右圆偏振光的吸收不相同,产生的吸收差值,由于这种吸收差的存在,造成了偏振光矢量的振幅差,圆偏振光变成了椭圆偏振光,这就是蛋白质的圆二色性。
圆二色性的大小常用摩尔消光系数差△ (M-1 ·cm-1 )来度量。
蛋白质的CD光谱一般分为两个波长范围,即178—250 nm为远紫外区CD光谱,250—320 nm为近紫外区CD光谱, 具有不同二级结构的蛋白质或多肽所产生CD谱带的位置、吸收的强弱都不相同。
圆二色谱实验总结圆二色谱是用来表征蛋白的二级结构和三级结构的常用方法,在界面课题组主要用来表征肽自组装体的二级结构;通常对于三级结构不予考虑。
这一方法的实验操作容易,与一般的光谱测量相同,但是形成的机制比较复杂。
在此只能说我自己理解了的部分,对于不理解的部分还需要继续查文献进行了解。
1圆二色谱的原理名称中虽有“色谱”两字,但是这一测量方法实际上是一光谱法,光谱法对应的即为电子的跃迁行为。
同时,光谱法中必然存在的定量关系就是朗伯-比尔定律,圆二色谱的方法就是建立在这一光吸收过程上的光谱方法。
1.1预备知识需要推演圆二色谱的原理用到的工具有数学工具和物理知识两个方面,分别叙述如下。
1.1.1 数学工具在推演圆二色谱的数学表达形式时,需要用到一些数学知识,主要有圆的普通方程及参数方程、椭圆的普通方程及参数方程,相关的三角函数知识,这些数学知识基本都在高中阶段学过。
首先说明圆的普通方程和参数方程:圆的普通方程即为仅对圆上点的坐标关系进行描述的方程。
圆上点的特点是对固定点(即圆心)的距离相等,设圆心的坐标为(x0, y0)半径为r,则圆的普通方程为√(x−x0)2+(y−y0)2=r通常用的是化简的形式,为讨论方便,将圆心设为原点,即得到x2+y2=r2利用同角三角函数关系,即sin²θ+cos²θ=1可将上述方程参数化,得到圆的参数方程{y=r sinθx=r cosθ使用同样的思路,可以得到椭圆的参数方程,即{y=b sinθx=a cosθ消去参数后,得到椭圆的标准方程,即x2 a2+y2b2=1上述有关于椭圆的方程中均有a≠b。
1.2 物理预备知识关于物理的预备知识是最基本的波动光学的观点。
按照波动光学的观点,光是在空间中交替传播的电磁场,电场强度的方向与磁感应强度的方向垂直。
从能量分布的角度来说,光的能量被认为主要以电场的形式传播,因而通常也将光的电场强度矢量方向定义为光矢量方向。
圆二色谱圆二色谱是一种特殊的吸收普,它对手性分子的构象十分敏感,因此它是最重要的光谱实验之一。
手性是物质结构中的重要特征,即具有不能重叠的三维镜像对映异构体,它们的分子式完全相同,但其中原子或原子基团在空间的配置不同,互为镜像。
凡手性分子都具有光学活性,即可使偏振光的振动面发生旋转。
许多有机物和络合物都具有手性,它们的对映异构体物理化学性质(熔点、沸点、旋光度、溶解度、分子式等)几乎完全相同,但它们的旋光方向相反,生理作用大不相同。
生物基础分子一般都具有手性,也都具有光学活性。
在对生物分子手性的研究中,发现了令人惊异至今不解的对称性破缺现象,那就是在自然界中,氨基酸有L型和D型两种对映异构体,天然糖也有L糖和D糖两种糖。
但在生物体中,组成蛋白质的20种氨基酸,除最简单的甘氨酸不具有手性外,其余都是L型的,而生物体核酸中的糖环则都是D型的。
生物体中这种对称性破缺现象是有特殊意义的自然现象。
手性分子都具有光学活性。
当单色左旋与右旋的圆偏振光通过某一种手性样品时,该样品对左、右旋圆偏振光的吸收不同,这叫做圆二色性。
其差值△A=△AL一△AR称为圆二色值,按波长扫描就得到了圆二色谱(CD谱)。
利用法拉第效应,在外加磁场作用下,许多原来没有光学活性的物质也具有了光学活性,原来可测出CD谱的在磁场中CD信号将增大几个量级。
这种条件下即可测得磁圆二色谱(MCD谱)。
CD和MCD是特殊的吸收谱,它们比一般的吸收谱弱几个量级,但由于它们对分子结构十分敏感,因此近十几年来,CD和MCD 已成为研究分子构型和分子间相互作用的最重要的光谱实验之一。
利用CD和MCD 研究生物大分子和药物分子,具有重要的科学意义和实用价值。
基本定义和原理一束平面偏振光通过光学活性分子后,由于左、右圆偏振光的折射率不同,偏振面将旋转一定的角度,这种现象称为旋光,偏振面旋转的角度称为旋光度。
朝光源看,偏振面按顺时针方向旋转的,称为右旋,用“+”号表示;偏振面按逆时针方向旋转的,称为左旋,用“-”号表示。
圆二色谱报告一、实验目的1. 圆二色性;2. 圆二色光谱的原理与应用;3. 圆二色光谱的相关拓展知识;4. 圆二色光谱的实验技术与操作。
二、实验原理圆二色性是手性分子在光学上表现的一种特性。
光可视为振动方向与传播方向垂直的电磁横波。
当光波的电矢量方向以一个固定的角速度以传播方向为轴心匀速旋转时,称之为圆偏振光。
根据圆偏振光电矢量旋转方向的不同,可以将其区分为左圆偏振光和右圆偏振光。
一束平面偏振光可以看成是由两个振幅和速度相同而螺旋前进方向相反的圆偏振光叠加而成(图1)。
两圆偏振光彼此对映,互为镜像。
当手性物质在偏振光的波长范围内存在吸收的时候,其对左右圆偏振光的吸收程度,也就是摩尔吸光系数,是不同的。
此时不但偏振光的偏振平面将被旋转,构成该偏振光的左右圆偏振光的振幅也将不再相等。
组成出射光的左右圆偏振光的电矢量和将沿一个椭圆轨迹移动,此时的出射光就是椭圆偏振光(图2)。
这种光学现象就称为手性物质所具有的圆二色性。
对于纯手性物质,其椭圆偏振光的椭圆度θ在特定溶剂、浓度、温度和光程下,在特定波长处为定值。
同时,在特定波长处的椭圆度θ与在该波长处对左右圆偏振光的摩尔吸光系数之差(Δε)成正比。
将θ或Δε对波长作图,即得到圆二色光谱。
图1 右圆偏振光(a)、左圆偏振光(b)及平面偏振光示意图,水平箭头表示光的传播方向。
图2 (a) 平面偏振光的圆组分;(b) 平面偏振光的旋转与圆组分;(c) 椭圆偏振光的旋转与圆组分被吸收的情况。
其中,OB与OC分别表示右、左圆偏振光被吸收后的振幅,OD表示OB与OC的矢量和,θ表示椭圆偏振光的椭圆率角,tanθ= OE/OA″≈θ。
圆二色光谱的英文名称为Circular Dichroism,简称CD光谱。
其光谱仪的基本测试原理是——通过入射圆偏振光的波长变化,测定手性样品的左圆偏振光和右圆偏振光摩尔消光系数之差Δε。
由于CD光谱反映了光和分子间的能量交换,因而只能在有最大能量交换的共振波长范围内测。
实验二圆二色光谱一、实验目的1.学习和了解圆二色光谱的原理2.掌握圆二色光谱的的操作和分析二、实验原理1.圆偏振光振幅保持不变,而方向随前进方向随周期性变化,电场矢量绕绕传播方向螺旋前进2.圆二色性当光通过光学活性的物质时,介质对左右旋的圆偏振光的吸收率不同,二者的差值称为该物质的圆二色性(circular dichroism,简称CD)3.圆二色谱图光学活性物质对左右圆偏振光的吸收率之差为Δε=εL-εR是随入射偏振光的波长变化而变化的以Δε或有关量为纵坐标,波长为横坐标得到的谱图称为圆二色谱图,由于Δε绝对值很小,常用摩尔椭圆[θ]度来代替,二者的关系是[θ] =3300Δε当光学活性物质对光没有特性吸收时,在谱图中仅为一条近似的直线,当光学活性物质对光存在特征性吸收时通常有两种情况:当εL>εR得到一个正的圆二色谱图,当εL<εR得到一个负的圆二色谱图三、实验内容1.实验仪器及构造圆二色谱仪的基本构造:2.圆二色谱的应用蛋白质的圆二色性(1)由氨基酸通过肽键连接而成;(2)光学活性基团:肽键、芳香氨基酸残基、二硫桥键;(3)蛋白质有多个结构层次,相同的氨基酸序列,因蛋白质的折叠结构不同,基团的光学活性受到影响。
蛋白质的圆二色特征(1)光学活性基团及折叠结构;(2)250nm以下的光谱区,肽键的电子跃迁引起;(3)250~300nm光谱区,侧链芳香基团的电子跃迁引起;(4)300~700nm光谱区,蛋白质辅基等外在生色基团引起。
3.实验内容分别测定左旋和右旋苯丙氨酸的圆二色光谱三、实验结论可以通过圆二色光谱来分析化合物的手性结构。
从图中可知,左旋异构体对右旋的圆偏振光的吸收要比左旋圆偏振光大;同理,右旋异构体对左旋圆偏振光的吸收要比右旋圆偏振光要大。
故在分析位置样品时,若谱线峰值大于零,则为左旋,反之,则为左旋。
圆二色谱分析结果怎么看?圆二色谱是一种常用的生物制药分析技术,它可以用来研究生物大分子的结构和构象变化。
通过测量样品对不同波长的左旋光和右旋光的吸收情况,我们可以得到圆二色谱图谱。
本文将详细介绍如何解读圆二色谱分析结果。
一、圆二色谱图谱的基本结构圆二色谱图谱通常由两个曲线组成:正旋光曲线和负旋光曲线。
正旋光曲线表示样品对右旋光的吸收情况,而负旋光曲线表示样品对左旋光的吸收情况。
这两个曲线的形状和峰值位置可以提供关于样品的结构和构象信息。
图1。
二、峰值位置的解读圆二色谱图谱中的峰值位置可以告诉我们样品的二级结构信息。
一般来说,α-螺旋结构在190-200 nm处会出现负峰,而β-折叠结构在210-220 nm处会出现正峰。
通过观察峰值位置的变化,我们可以推断样品的二级结构变化。
三、峰值强度的解读除了峰值位置,圆二色谱图谱中的峰值强度也是解读样品结构的重要指标。
峰值强度反映了样品对旋光的吸收程度,强度越高表示吸收越强。
通过比较不同样品的峰值强度,我们可以判断它们的结构差异。
四、色谱图形的解读除了峰值位置和峰值强度,圆二色谱图谱的整体形状也提供了有关样品结构的信息。
例如,如果图谱呈现出对称的双峰形状,那么可能存在一种手性结构。
而如果图谱呈现出单峰形状,那么样品可能是非手性的。
五、结构变化的解读通过比较不同条件下的圆二色谱图谱,我们可以观察到样品结构的变化。
例如,当样品在不同温度下进行测量时,我们可以观察到峰值位置的变化,从而推断样品的热稳定性。
类似地,通过比较不同pH值下的圆二色谱图谱,我们可以了解样品的酸碱稳定性。
圆二色谱分析结果的解读需要考虑峰值位置、峰值强度、峰形、色谱图形和对比分析等因素。
通过综合分析这些指标,我们可以得出关于样品结构特征、纯度和质量变化情况的重要信息。
圆二色谱作为一种重要的分析技术,在生物制药领域具有广泛的应用前景。
百泰派克生物科技——生物制品表征,多组学生物质谱检测优质服务商。
圆二色谱总结圆二色谱是一种常用于研究分子结构和性质的重要工具,特别是在物理、化学、生物学以及材料科学等领域。
它利用偏振光通过样品时产生的圆偏振光变化来测量样品的光谱特性。
以下是关于圆二色谱的一些总结:1.圆二色谱的定义和原理圆二色谱(Circular Dichroism,CD)是一种测量左旋和右旋偏振光通过样品后的透过率差别的技术。
当偏振光通过一个含有手性分子的样品时,它会发生旋光,即偏振面会旋转。
通过测量旋光度,可以确定分子的手性及其结构。
2.圆二色谱的应用圆二色谱被广泛应用于各种科学领域。
例如,在生物学中,CD被用于研究蛋白质和DNA的结构和动力学。
在化学中,它被用于研究有机化合物的手性和分子结构。
在材料科学中,CD被用于研究纳米材料和功能材料的光学特性。
3.圆二色谱的优势和局限性圆二色谱有以下几个优势:(1)灵敏度高:可以检测到样品中微小的旋光度变化,从而可以研究分子结构和动力学。
(2)分辨率高:可以区分不同的手性分子,这对于研究分子结构和手性之间的关系非常重要。
(3)无损检测:不会对样品造成破坏,因此可以用于研究生物样品和其他易损坏的样品。
然而,圆二色谱也存在一些局限性:(1)需要大量的样品:通常需要大量的样品才能获得可靠的CD谱图。
(2)需要专业的技术人员:需要进行CD测量的实验需要专业的技术人员进行操作和维护。
4.圆二色谱的发展趋势近年来,圆二色谱技术不断发展,出现了许多新的技术和发展趋势,如:(1)高精度CD测量技术:随着技术的进步,现在可以获得更高的测量精度和分辨率,从而能够更深入地研究分子的结构和动力学。
(2)CD与其他谱图的联用技术:可以将CD与其他谱图技术联用,如红外光谱、核磁共振谱等,从而可以从多个角度研究分子的结构和性质。
(3)CD在生物医学中的应用:CD可以用于研究生物分子的结构和动力学,从而可以应用于生物医学领域,如药物筛选、疾病诊断和治疗等。
(4)CD在材料科学中的应用:通过CD可以研究纳米材料、功能材料的光学特性,为材料科学的发展提供新的工具。
实验四—圆二色光谱实验圆二色光谱实验一、实验目的1、了解圆二色(CD)光谱的原理和使用方法。
2、学会用圆二色光谱检测蛋白质二级构象的基本原理和方法,并学会分析物质的手性。
3、了解圆二色光谱仪的基本构造,并学会使用。
二、实验原理1.CD光谱的基本知识圆二色性是研究分子立体结构和构象的有利手段。
在一些物质的分子中,没有任意次旋转反映轴,不能与镜像相互重叠,具有光学活性。
电矢量相互垂直,振幅相等,位相相差四分之一波长的左和右圆偏振光重叠而成的是平面圆偏振光。
平面圆偏振光通过光学活性分子时,这些物质对左、右圆偏振光的吸收不相同,产生的吸收差值,就是该物质的圆二色性。
圆二色性用摩尔系数系数差ΔεM来度量,且有关系式:ΔεM = εL –εR,其中,εL 和εR分别表示左和右偏振光的摩尔吸收系数。
如果εL –εR >0,则ΔεM为“+”,有正的圆二色性,相应于正Cotton效应;如果εL –εR<0,则ΔεM为“-”,有负的圆二色性,相应于负Cotton效应。
由于这种吸收差的存在,造成了矢量的振幅差,因此从圆偏振光通过介质后变成了椭圆偏振光。
圆二色性也可用椭圆度θ或摩尔椭圆度[θ]度量。
[θ]和ΔεM之间的关系式:[θ]=3300*Δε圆二色光谱表示的[θ]或ΔεM与波长之间的关系,可用圆二色谱仪测定。
一般仪器直接测定的是椭圆度θ,可换算成[θ]和ΔεM:[θ] = 100θ/cl,ΔεM= θ/33cl 其中,c表示物质在溶液中的浓度,单位为mol/L;l为光程长度(液池的长),单位为cm。
输入c和l的值,一般仪器能自动进行换算,给出所需要的关系。
2.定性分析原理圆二色光谱仪需要将平面偏振调制成左、右圆偏振光,并用很高的频率交替通过样品,因而设备复杂,完成这种调制的是电致或压力致晶体双折射的圆偏振光发生器(也称Pocker池或应力调制器)。
圆二色谱仪一般采用氙灯作光源,其辐射通过由两个棱镜组成的双单色器后,就成为两束振动方向相互垂直的偏振光,由单色器的出射狭缝排除一束非寻常光后,寻常光由CD调制器制成交变的左圆偏振光、右圆偏振光,这两束圆偏振光通过样品产生的吸收差由光电倍增管接受检测。
生物分析圆二色光谱圆二色光谱分析法引言五十年代初,生物学研究从宏观领域深入到微观领域,开创了分子生物学的新时代。
随着研究的不断深入和发展,生物学已发展成最活跃的学科之一。
手性(Chirality)是物质结构中的重要特征.即具有不能重叠的三维镜像对映异构体,它们的分子式完全相同,但其中原子或原子基团在空间的配置不同,互为镜像。
凡手性分子都具有光学活性,即可使偏振光的振动面发生旋转。
生物基础分子一般都具有手性,也都具有光学活性。
在自然界中,氨基酸有L型和D型两种对映异构体,组成蛋白质的20种氨基酸,除最简单的甘氨酸不具有手性外,其余都是L型的[1]。
手性分子都具有光学活性。
当单色左旋与右旋的圆偏振光通过某一种手性样品时,该样品对左、右旋圆偏振光的吸收不同,这叫做圆二色性(Circular Dichroism)。
其差值△A=△A L-△A R称为圆二色值,按波长扫描就得到了圆二色谱(CD谱)。
CD谱是特殊的吸收谱,它比一般的吸收谱弱几个量级,但由于它对分子结构十分敏感,因此近十几年来,CD已成为研究分子构型(象)和分子间相互作用的最重要的光谱实验之一。
利用CD研究生物大分子和药物分子,具有重要的科学意义和实用价值[2,3]。
一、蛋白质的圆二色性蛋白质是由氨基酸通过肽键连接而成的具有特定结构的生物大分子。
蛋白质一般有一级结构、二级结构、超二级结构、结构域、三级结构和四级结构几个结构层次[4-6]。
在蛋白质或多肽中,主要的光活性基团是肽链骨架中的肽键、芳香氨基酸残基及二硫桥键。
当平面圆偏振光通过这些光活性的生色基团时,光活性中心对平面圆偏振光中的左、右圆偏振光的吸收不相同,产生的吸收差值,由于这种吸收差的存在,造成了偏振光矢量的振幅差,圆偏振光变成了椭圆偏振光,这就是蛋白质的圆二色性。
圆二色性的大小常用摩尔消光系数差△ (M-1 ·cm-1 )来度量。
蛋白质的CD光谱一般分为两个波长范围,即178—250 nm为远紫外区CD光谱,250—320 nm为近紫外区CD光谱, 具有不同二级结构的蛋白质或多肽所产生CD谱带的位置、吸收的强弱都不相同。
圆二色性CD光谱的制备与实验步骤是什么?1. 引言圆二色性CD(Circular Dichroism)光谱是一种重要的生物物理学技术,用于研究生物分子的结构和构象变化。
它通过测量左旋和右旋圆偏振光的吸收差异,提供了关于分子的手性和构象信息。
本文将介绍圆二色性CD光谱的制备与实验步骤。
2. 实验仪器与试剂准备在进行圆二色性CD光谱实验之前,我们需要准备以下仪器和试剂:2.1 圆二色仪。
圆二色仪是进行CD光谱实验的关键仪器,它能够发射圆偏振光并测量样品对不同波长的圆偏振光的吸收差异。
选择合适的圆二色仪对于获得准确的CD光谱数据至关重要。
2.2 样品溶液。
选择适当的样品溶液是进行CD光谱实验的关键。
通常情况下,生物大分子如蛋白质、核酸等需要在缓冲溶液中进行测量,以保持其稳定性和活性。
2.3 光学比色皿。
光学比色皿是用于容纳样品溶液的容器,它需要具备良好的光学透明性和化学稳定性,以确保测量的准确性和重复性。
3. 实验步骤进行圆二色性CD光谱实验的步骤如下:3.1 样品制备。
首先,准备所需的样品溶液。
根据实验需要,选择合适的缓冲溶液,并将样品溶解在其中。
确保样品溶液的浓度适当,以获得清晰的CD光谱信号。
3.2 样品装载。
将样品溶液转移到光学比色皿中。
确保光学比色皿干净,并避免产生气泡或污染物,以免影响测量结果。
3.3 仪器校准。
在进行实际测量之前,需要对圆二色仪进行校准。
校准过程通常包括空白测量和参考物质测量,以确保测量结果的准确性和可靠性。
3.4 测量参数设置。
根据实验需要,设置合适的测量参数。
这包括选择合适的波长范围、扫描速度和光强等参数,以获得最佳的CD光谱信号。
3.5 开始测量。
将光学比色皿放入圆二色仪中,并开始测量。
仪器将发射圆偏振光并测量样品对不同波长的圆偏振光的吸收差异。
测量过程中,保持样品溶液的稳定性和温度一致性。
3.6 数据分析。
测量完成后,将得到的CD光谱数据导出并进行分析。
常见的数据分析方法包括曲线拟合、峰位和峰形分析等,以获得关于样品的结构和构象信息。
圆二色谱实验报告圆二色谱应用技术一、实验目的1、了解圆二色(CD)光谱的工作原理。
2、学会运用圆二色谱测氨基酸,蛋白质,DNA。
二、实验原理对R和L两种圆偏振光吸收程度不同的现象。
这种吸收程度的不同与波长的关系称圆二色谱,是一种测定分子不对称结构的光谱法。
圆二色光谱是一种差光谱,样品在左旋偏振光照射下的吸收光谱与其在右旋吸收光谱照射下的偏振光之差。
物质的吸收光谱决定物质的颜色。
如果一个物质对左旋偏振光和对右旋偏振光的吸收不同,那么称该物质具有圆二色性(circulardi2chroism,简称CD)。
同样,如果一个物质对于不同方向的线偏振光的吸收不同,那么该物质具有线二色性。
很多各向异性的晶体具有线二色性;而很多生物大分子和有机分子具有圆二色性在分子生物学领域中主要用于测定蛋白质的立体结构,也可用来测定核酸和多糖的立体结构。
圆二色谱仪由光源、单色器、起偏器、圆偏振发生器、试样室和光电倍增管组成。
三、实验步骤1.通高纯氮气45min后,开机2.点亮氙灯:打开主机电源INSTRUMENTPOWER;打开氙灯电源XENONLMAPPOWER;等待LMAPready 灯亮;按红色IGNITELMAP 按钮3.打开主板电源INSTRUMENTPOWER4.打开Thermocubechiller(开关在冷却器左边)5.打开软件,设置参数,选择数据保存设置;选择保存位置;开始实验,保存数据6关软件TerminateCDSProgram 中关闭7关氙灯电源XENONLMAPPOWER8关闭Thermocubechiller9等待10min 后关闭高纯氮气(可先行下述步骤)10清洗比色皿、注射泵及其他附件11光盘刻录数据12关闭主机电源INSTRUMENTPOWER四、试验结果和数据处 180200220240260280300-250-200-150-100-50050D e s c r i p t i o nWavelength(nm)a180200220240260280300-10-55101520D e s c r i p t i o n Wanelength(nm)b图:a为稀释前曲线,b为稀释20倍后曲线在蛋白质分子中,肽链的不同部分可分别形成α-螺旋、β-折叠、β-转角等特定的立体结构。
圆二色谱圆二色谱是一种特殊的吸收普,它对手性分子的构象十分敏感,因此它是最重要的光谱实验之一。
手性是物质结构中的重要特征,即具有不能重叠的三维镜像对映异构体,它们的分子式完全相同,但其中原子或原子基团在空间的配置不同,互为镜像。
凡手性分子都具有光学活性,即可使偏振光的振动面发生旋转。
许多有机物和络合物都具有手性,它们的对映异构体物理化学性质(熔点、沸点、旋光度、溶解度、分子式等)几乎完全相同,但它们的旋光方向相反,生理作用大不相同。
生物基础分子一般都具有手性,也都具有光学活性。
在对生物分子手性的研究中,发现了令人惊异至今不解的对称性破缺现象,那就是在自然界中,氨基酸有L型和D型两种对映异构体,天然糖也有L糖和D糖两种糖。
但在生物体中,组成蛋白质的20种氨基酸,除最简单的甘氨酸不具有手性外,其余都是L型的,而生物体核酸中的糖环则都是D型的。
生物体中这种对称性破缺现象是有特殊意义的自然现象。
手性分子都具有光学活性。
当单色左旋与右旋的圆偏振光通过某一种手△A=△AL一△AR称为圆二色值,按波长扫描就得到了圆二色谱(CD利用法拉第效应,在外加磁场作用下,许多原来没有光学活性的物质也具有了光学活性,原来可测出CD谱的在磁场中CD信号将增大几个量级。
这种条件下即可测得磁圆二色谱(MCD谱)。
CD和MCD是特殊的吸收谱,它们比一般的吸收谱弱几个量级,但由于它们对分子结构十分敏感,因此近十几年来,CD和MCD 已成为研究分子构型和分子间相互作用的最重要的光谱实验之一。
利用CD和MCD 研究生物大分子和药物分子,具有重要的科学意义和实用价值。
基本定义和原理一束平面偏振光通过光学活性分子后,由于左、右圆偏振光的折射率不同,偏振面将旋转一定的角度,这种现象称为旋光,偏振面旋转的角度称为旋光度。
朝光源看,偏振面按顺时针方向旋转的,称为右旋,用“+”号表示;偏振面按逆时针方向旋转的,称为左旋,用“-”号表示。
为了揭示物质的旋光性,菲涅耳作了如下的假设,线偏振光在旋光晶体中沿光轴传播时,分解成了左旋和右旋圆偏振光,它们的传播速度略有不同,或者说它们的折射率不同,经过旋光晶片后产生了附加的相位差,从而使出射的合成线偏振光的振动面有了一定角度的偏转。
3.3.9圆二色性(Circular dichroic,CD)测定1%(w/w)的蛋清溶液调节到pH 4.0,6.0,10.0,在85oC加热不同时间,离心,取上清液,然后稀释至100~200μg/mL溶液。
对照组为天然蛋清样品。
用Jasco J-715光度计测定样品的CD谱。
测定条件设定:测定波长范围190~250 nm,25oC,比色皿光径1 mm,分辨率0.2 nm,扫描速率100 nm/min,扫描5次。
使用Jasco SSE软件确定样品的二级结构百分含量。
3.4.6蛋白质的二级结构对DH的影响蛋白酶的水解反应还受到蛋白质的结构的影响,一般结构紧密的蛋白质提供的酶切位点少于结构松散的蛋白质。
因此有必要研究蛋白质结构对DH的影响。
蛋白质的热处理可能引起二级、三级和四级结构的变化。
从二级结构看,α-螺旋结构表现蛋白质分子的有序性,而其结构如β-折叠、β-转角、无规卷曲等反映了蛋白质分子的松散性[26]。
蛋白质分子的有序性差,越有利于蛋白酶的水解。
目前,研究蛋白质构象最好的方法是x-射线衍射,但对结构复杂、柔性的生物大分子蛋白质来说,制备蛋白质单晶较为困难。
二维、多维核磁共振技术能测出溶液状态下蛋白质分子的构象,可是对分子量较大的蛋白质的计算处理非常复杂。
相比之下圆二色性是研究稀溶液中蛋白质分子构象的一种快速、简单、较准确的方法。
圆二色性在紫外区段(190~240 nm),主要生色团是肽链,这一波长范围的CD谱包含着生物大分子主链构象的信息。
在一般情况下,实验中得到的CD谱线是α-螺旋、β-折叠和无规卷曲构象的CD 谱的线性迭加[27]。
图3-7显示天然蛋清的CD谱线a在222 nm处和208 nm处呈负峰,在190 nm附近有一正峰,这是存在部分α-螺旋构象的特征。
谱线b、c、d、e在221 nm处的负谱带减弱,意味着α-螺旋的百分比减小。
谱线b、c、d、e向短波长方向移动,即发生蓝移。
由于发色团吸收光谱发生位移主要取决于它的微环境更加亲水或疏水的结果[28],因此谱线b、c、d、e蓝移的发生说明体系的亲水性降低,即疏水性增加。
圆二色谱Circular Dichroism (CD)Application圆二色光谱仪通过测量生物大分子的圆二色光谱从而得到生物大分子的二级结构。
可应用于:蛋白质折叠﹑蛋白质构象研究,DNA/RNA反应, 酶动力学, 光学活性物质纯度测量,药物定量分析。
天然有机化学与立体有机化学,物理化学, 生物化学与宏观大分子, 金属络合物,聚合物化学等相关的科学研究。
构象确定蛋白质构象最准确的方法是x-射线晶体衍射,但对结构复杂、柔性的生物大分子蛋白质来说,得到所需的晶体结构较为困难。
二维、多维核磁共振技术能测出溶液状态下较小蛋白质的构象,可是对分子量较大的蛋白质的计算处理非常复杂。
圆二色光谱:研究稀溶液中蛋白质构象,快速、简单、较准确CD is very useful for looking at membrane proteinsMembrane proteins are difficult to study.Crystallography difficult -need to use detergentsOften even when structure obtained:Q-is it the same as lipid?CD ideal can do spectra of protein in lipid vesicles.We will look at Staphylococcal a-hemolysin as an example主要内容•CD原理•蛋白质CD谱•CD实验要点CD原理圆二色性(circular dichroism, CD)当平面偏振光通过具有旋光活性的介质时,由于介质中同一种旋光活性分子存在手性不同的两种构型,故它们对平面偏振光所分解成的右旋和左旋圆偏振光吸收不同,从而产生圆二色性.圆二色性的表示椭圆度θ,摩尔椭圆度[θ]θ=2.303(A L–A R)/4[θ] = 3298(εL-εR)≈3300 (εL-εR)在蛋白质研究中,常用平均残基摩尔椭圆度圆二色仪原理蛋白质的CD谱蛋白质的光学活性The peptide bond is inherently asymmetric & is always optically active蛋白质的CD谱•CD spectra in the far UV region (180 nm –250 nm) probes the secondary structures of proteins.•CD spectra in the near UV region (~250 and ~ 350) monitors the side chain tertiary structures of proteins.Near UV CD spectrum蛋白质中芳香氨基酸残基,如色氨酸(Trp)、酪氨酸(Tyr)、苯丙氨酸(Phe)及二硫键处于不对称微环境时,在近紫外区250~320 nm,表现出CD信号。
圆二色谱方法一、基础知识介绍圆二色谱是一种用于研究分子旋光性的光谱技术,通过测量样品在圆偏振光照射下的吸收光谱,可以获得关于分子手性、构象和动态行为等信息。
圆二色谱广泛应用于化学、生物学、药学等领域。
二、实验原理当左旋圆偏振光和右旋圆偏振光以一定比例混合时,形成椭圆偏振光。
当这种椭圆偏振光通过手性分子时,左旋和右旋偏振光会被不同吸收,导致透射光的强度和旋光性发生变化。
通过测量透射光的强度和旋光性,可以获得样品的圆二色谱。
三、实验步骤1.准备样品:制备适当浓度的样品溶液,确保样品在手性环境中。
2.安装仪器:将样品放入圆二色谱仪器的样品池中,确保密封良好。
3.设定参数:设置实验参数,如波长范围、扫描速度等。
4.开始实验:启动仪器,开始测量样品的圆二色谱。
5.数据分析:处理实验数据,提取相关信息。
四、数据分析在圆二色谱实验中,通过测量透射光的强度和旋光性,可以绘制出样品的圆二色谱图。
通常情况下,圆二色谱图以波长为横坐标,以旋光度差值ΔOD(或ΔA)为纵坐标。
通过分析圆二色谱图的峰位、峰形和峰强等信息,可以推断出样品的构象、手性和动态行为等。
五、影响因素影响圆二色谱实验结果的因素很多,主要包括温度、浓度、溶剂极性等。
这些因素可能会影响分子的构象和手性,从而影响实验结果。
因此,在实验过程中需要控制这些因素,以确保实验结果的准确性。
六、应用领域圆二色谱方法在多个领域中有着广泛的应用,例如:在手性识别与拆分领域中,可以用于检测手性化合物的纯度;在化学反应监控领域中,可以用于研究化学反应的机理和动力学;在生物学领域中,可以用于研究生物分子的结构和功能等。
七、实验注意事项1.在实验过程中要保持恒温,避免温度波动对实验结果的影响。
2.确保样品的浓度和纯度符合要求,避免杂质干扰实验结果。
3.正确选择溶剂和浓度,以确保分子处于合适的构象状态。
4.在数据分析过程中要注意峰位的准确性,避免由于仪器噪声等因素引起的误差。
八、展望随着科技的不断发展和进步,圆二色谱方法的应用前景也越来越广泛。
磁圆二色光谱
磁圆二色光谱是一种用来研究物质的磁性和光学性质的实验方法。
它利用磁光效应和圆二色效应来分析物质的结构和性质。
磁光效应是指当光通过磁性物质时,光的传播速度和方向受到磁场的影响,从而导致光的偏振方向旋转。
磁光效应的大小与磁性物质的磁矩和外加磁场的强度有关。
圆二色效应是指当光通过手性分子(旋光物质)时,不同偏振光的旋转角度不同,导致光的偏振方向发生旋转,并且光的吸收率也会发生变化。
圆二色效应的大小与手性分子的结构和构象有关。
磁圆二色光谱实验中,通常使用一个光学器件,如光栅,将入射光分成不同波长的光束,然后通过一个外加磁场,使光束通过样品。
接下来,使用一个旋光片或偏振片来测量光束的旋转角度和吸收率的变化,从而得到样品的磁光效应和圆二色效应的信息。
磁圆二色光谱可以用来研究各种物质,包括磁性材料、手性分子和生物分子等。
通过分析磁圆二色光谱的结果,可以揭示物质的结构、构象和相互作用等重要信息,对于物质的研究具有重要的意义。
圆二色光谱实验
一、实验目的
1、了解圆二色(CD)光谱的原理和使用方法。
2、学会用圆二色光谱检测蛋白质二级构象的基本原理和方法,并学会分析物质的手性。
3、了解圆二色光谱仪的基本构造,并学会使用。
二、实验原理
1.CD光谱的基本知识
圆二色性是研究分子立体结构和构象的有利手段。
在一些物质的分子中,没有任意次旋转反映轴,不能与镜像相互重叠,具有光学活性。
电矢量相互垂直,振幅相等,位相相差四分之一波长的左和右圆偏振光重叠而成的是平面圆偏振光。
平面圆偏振光通过光学活性分子时,这些物质对左、右圆偏振光的吸收不相同,产生的吸收差值,就是该物质的圆二色性。
圆二色性用摩尔系数系数差ΔεM来度量,且有关系式:ΔεM = εL –εR,其中,εL 和εR分别表示左和右偏振光的摩尔吸收系数。
如果εL –εR >0,则ΔεM为“+”,有正的圆二色性,相应于正Cotton效应;如果εL –εR<0,则ΔεM为“-”,有负的圆二色性,相应于负Cotton效应。
由于这种吸收差的存在,造成了矢量的振幅差,因此从圆偏振光通过介质后变成了椭圆偏振光。
圆二色性也可用椭圆度θ或摩尔椭圆度[θ]度量。
[θ]和ΔεM之间的关系式:[θ]=3300*Δε
圆二色光谱表示的[θ]或ΔεM与波长之间的关系,可用圆二色谱仪测定。
一般仪器直接测定的是椭圆度θ,可换算成[θ]和ΔεM:[θ] = 100θ/cl,ΔεM= θ/33cl 其中,c表示物质在溶液中的浓度,单位为mol/L;l为光程长度(液池的长),单位为cm。
输入c和l的值,一般仪器能自动进行换算,给出所需要的关系。
2.定性分析原理
圆二色光谱仪需要将平面偏振调制成左、右圆偏振光,并用很高的频率交替通过样品,因而设备复杂,完成这种调制的是电致或压力致晶体双折射的圆偏振光发生器(也称Pocker池或应力调制器)。
圆二色谱仪一般采用氙灯作光源,其辐射通过由两个棱镜组成的双单色器后,就成为两束振动方向相互垂直的偏振光,由单色器的出射狭缝排除一束非寻常光后,寻常光由CD调制器制成交变的左圆偏振光、
右圆偏振光,这两束圆偏振光通过样品产生的吸收差由光电倍增管接受检测。
测试时要通入氮气赶走管路中的水蒸气和光源产生的臭氧(臭氧会腐蚀反射镜)。
光学活性物质对左、右旋圆偏振光的吸收率不同,其光吸收的差值ΔA ( Al - Ad) 称为该物质的圆二色性(circular dichroism,简写作CD) 。
圆二色性的存在使通过该物质传播的平面偏振光变为椭圆偏振光,且只在发生吸收的波长处才能观察到。
所形成的椭圆的椭圆率θ为:θ= tg- 1(短轴/长轴)
根据Lambert-Beer 定律可证明椭圆率近似地为:θ= 0.576 lc (εl - εd) = 0.576 lcΔε 公式中l 为介质厚度,c 为光活性物质的浓度,εl 及εd分别为物质对左旋及右旋圆偏振光的吸收系数。
测量不同波长下的θ(或Δε) 值与波长λ之间的关系曲线,即圆二色光谱曲线。
在此光谱曲线中,如果所测定的物质没有特征吸收,则其Δε值很小,即得不到特征的圆二色光谱。
当εl >εd 时,得到的是一个正的圆二色光谱曲线,即被测物质为右旋;如果εl <εd ,则得到一个负的圆二色光谱曲线,即被测物质为左旋。
三、实验试剂和仪器
试剂:D/L-丙氨酸;蒸馏水
仪器:J-815CD Spectrometer;1cm比色皿*2
四、实验步骤
1.样品制备。
实验所需样品由助教提前制备好待用。
2.开机。
打开高纯氮气,通入光路。
打开计算机,进入操作界面,设置相关参数开启氙灯,等约30 min,待仪器充分预热后,方可使用。
3.测试
将光路径为1 cm的样品池放入样品室中,进入测试界面,输入测试参数:灵敏度1000 mdeg;扫面范围350-200 nm;扫速50 nm/min;响应时间2 s;响应波长宽度1.0 nm;扫描次数1次。
先测试蒸馏水背景,再分别测试配制的两份溶液。
4.关机
打开样品室,取出样品池;退出操作界面,关闭氙灯;关闭氮气,关闭主机电源;关闭计算机和打印机;清洗样品池。
五、数据处理
实验测定D\L丙氨酸得到数据,以CD(θ)为纵坐标,以波长为横坐标作图。
图1 D-丙氨酸的圆二色光谱图
图2 L-丙氨酸的圆二色光谱图
分析:丙氨酸D型和L型的圆二色光谱图有显著区别,L型的CD值大于零,而D 型的CD值小于零。
根据圆二色光谱图CD值的不同可以判断手性物质为左旋或右旋,区别异构体,也可以作为定性鉴定物质的依据。
另一方面,样品的吸光度则与浓度成正比相关,可作为定量分析。
六、思考与讨论
1.圆二色光谱在手性物质分析中的应用?
答:光学活性物质对左、右旋圆偏振光的吸收率不同,圆二色光谱图不同,右旋CD值大于零,左旋的CD值小于零,从而可以判断手性物质的旋光性。
不同的物质,特征吸收波长不同,通过对比圆二色光谱图可以进行定性分析。
蛋白质的具有圆二色性,不同的构象表现出不同的光谱性质,因此可以通过圆二色光谱法进行测定。
圆二色光谱是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单、较准确的方法。
2.如何让利用圆二色谱对蛋白质进行定量分析?
答:假设蛋白质在波长λ处的CD信号是蛋白质中各种二级结构组分的线性加
和,则有等式:。
假设溶液态蛋白质与晶体中的二级结构相同,则可利用已知二级结构的蛋白质或多肽的CD光谱作为参考数据,对未知蛋白质的二级结构进行拟合计算,能得出а-螺旋、β-折叠、β-转角、无规线团等结构所占的比例。