七年级培优竞赛讲义——第7讲:物以类聚──话说同类项
- 格式:pdf
- 大小:265.70 KB
- 文档页数:5
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题2.4合并同类项【名师点睛】1.同类项(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.同类项中所含字母可以看成是数字、单项式、多项式等.(2)注意事项:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.2.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.【典例剖析】【知识点1】同类项【例1】已知﹣4xy n+1与52x m y4是同类项,求2m+n的值.【分析】同类项的含有相同的字母且相同字母的指数相同,由此可得出答案.【解析】由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.【变式1】.判断下列各组中的两个项是不是同类项?为什么?(1)12x2y与﹣3yx2;(2)a2b与―12ab2;(3)2×32与3×22;(4)﹣2a2b与3a2bc.【分析】根据同类项的定义:所含字母相同,相同字母的次数相同,即可作出判断.【解析】(1)是同类项,因为12x2y与﹣3yx2都含有x、y且x的指数都是2,y的指数都是1;(2)不是同类项,因为a2b与―12ab2中,a的指数分别为2、1,b的指数分别为1、2,不同;(3)是同类项,2×32与3×22中都不含字母为常数项,常数项都是同类项;(4)不是同类项,因为所含字母不同,﹣2a2b中含字母a、b,而3a2bc中含字母a、b、c.【知识点2】合并同类项【例2】.合并下列各式的同类项:(1)2xy﹣3xy+5xy;(2)4x2﹣8x+5﹣3x2+6x﹣4;(3)3a m+4a m+1﹣5a m+1+2a m;(4)2(x﹣2y)2﹣7(x﹣2y)3+3(x﹣2y)2﹣(x﹣2y)3.【分析】各式利用合并同类项法则计算即可得到结果.【解答】(1)解:原式=4xy;(2)解:原式=x2﹣2x+1;(3)解:原式=5a m﹣a m+1;(4)解:原式=5(x﹣2y)2﹣8(x﹣2y)3.【变式2】.已知多项式3﹣2x2+3x+3x2﹣5x﹣x2﹣7.(1)合并该多项式中的同类项;(2)当x=―12时,求这个多项式的值.【分析】(1)首先找出同类项,进而合并,再利用字母x降幂排列即可;(2)把x=―12代入﹣2x﹣4求值即可.【解析】(1)3﹣2x2+3x+3x2﹣5x﹣x2﹣7=(﹣2+3﹣1)x2+(3﹣5)x+(3﹣7)=﹣2x﹣4;(2)当x=―12时,﹣2x﹣4=﹣2×(―12)﹣4=1﹣4=﹣3.【知识点3】合并同类项后不含某一项【例3】已知多项式mx4+(m﹣2)x3+(2n+1)x2﹣3x+n不含x2和x3的项,试写出这个多项式,再求当x=﹣1时多项式的值.【分析】根据mx4+(m﹣2)x3+(2n+1)x2﹣3x+n不含x2和x3的项可得出二次项和三次项的系数为0,从而求出m和n的值,再把x=﹣1代入多项式求出多项式的值即可.【解析】∵多项式mx4+(m﹣2)x3+(2n+1)x2﹣3x+n不含x2和x3的项,∴m﹣2=0,2n+1=0,∴m=2,n=―1 2,∴多项式为2x4﹣3x―1 2,当x=﹣1时,多项式为2×(﹣1)4﹣3×(﹣1)―12=2+3―12=92.【变式3】.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m+2n的值.【分析】根据关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,得到m+5=0,n﹣1=0,从而求得m,n的值,再求代数式的值即可.【解析】∵关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,∴m+5=0,n﹣1=0,∴m=﹣5,n=1,∴m+2n=﹣5+2=﹣3.【知识点4】整体思想在合并同类项中的应用【例4】将下列两个式子合并同类项.(提示:用整体思想)(1)5(a+b)2﹣(a+b)+2(a+b)2+2(a+b).(2)2(x﹣2y)2﹣7(x﹣2y)3+3(2y﹣x)2﹣(2y﹣x)3.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此计算即可.【解析】(1)原式=(5+2)(a+b)2+(2﹣1)(a+b)=7(a+b)2+(a+b);(2)原式=2(x﹣2y)2+7(2y﹣x)3+3(x﹣2y)2﹣(2y﹣x)3=(2+3)(x﹣2y)2+(7﹣1)(2y﹣x)3=5(x﹣2y)2+6(2y﹣x)3.【满分训练】一.选择题(共10小题)1.(2021•上海)下列单项式中,a2b3的同类项是( )A.a3b2B.3a2b3C.a2b D.ab3【分析】依据同类项的定义:所含字母相同,相同字母的指数相同,据此判断即可.【解析】A 、字母a 、b 的指数不相同,不是同类项,故本选项不符合题意;B 、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C 、字母b 的指数不相同,不是同类项,故本选项不符合题意;D 、相同字母a 的指数不相同,不是同类项,故本选项不符合题意;故选:B .2.(2021秋•姑苏区校级期末)下列各组中的两个项不属于同类项的是( )A .3x 2y 和﹣2x 2y B .﹣xy 和2yx C .﹣1和114D .a 2和32【分析】根据同类项的定义解答.【解析】A 、所含字母相同,相同字母的指数也相同,是同类项.B 、所含字母相同,相同字母的指数也相同,是同类项.C 、两个常数项也是同类项.D 、字母和数字不是同类项.故选:D .3.(2021秋•石阡县期中)已知2x 3y 2和﹣x m y 2是同类项,则式子4m ﹣24的值是( )A .﹣21B .﹣12C .36D .12【分析】根据同类项定义得出=3,代入求出即可.【解析】∵2x 3y 2和﹣x m y 2是同类项,∴m =3,∴4m ﹣24=4×3﹣24=﹣12,故选:B .4.(2021秋•拜泉县期中)已知25x 6y 和5x 2m y 是同类项,则m 的值为( )A .2B .3C .4D .2或3【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出m 的值,【解析】根据题意得:2m =6,解得:m =3.故选:B .5.(2021秋•招远市期末)如果单项式x 2y m +2与x n y 的和仍然是一个单项式,则m 、n 的值是( )A .m =2,n =2B .m =﹣1,n =2C .m =﹣2,n =2D .m =2,n =﹣1【分析】本题考查同类项的定义,单项式x 2y m +2与x n y 的和仍然是一个单项式,意思是x 2y m +2与x n y 是同类项,根据同类项中相同字母的指数相同得出.【解析】由同类项的定义,可知2=n ,m +2=1,解得m =﹣1,n =2.故选:B .6.(2021秋•吐鲁番市期末)下列运算正确的是( )A .3a +2b =5ab B .3a 2b ﹣3ba 2=0C .3x 2+2x 3=5x 5D .5y 2﹣4y 2=1【分析】根据合并同类项的法则把系数相加即可.【解析】A 、不是同类项不能合并,故A 错误;B 、系数相加字母及指数不变,故B 正确;C 、不是同类项不能合并,故C 错误;D 、系数相加字母及指数不变,故D 错误;故选:B .7.(2021秋•长寿区期末)下面运算正确的是( )A .3a +6b =9ab B .3a 3b ﹣3ba 3=0C .8a 4﹣6a 3=2aD .12y 2―13y 2=16【分析】根据同类项的定义及合并同类项的方法进行判断即可.【解析】A 、C 不是同类项,不能合并;B 、正确;D 、原式=16y 2.故选:B .8.(2018秋•临河区期末)下列式子计算正确的个数有( )①a 2+a 2=a 4;②3xy 2﹣2xy 2=1;③3ab ﹣2ab =ab ;④(﹣2)3﹣(﹣3)2=﹣17.A .1个B .2个C .3个D .0个【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【解析】①a 2+a 2=2a 2,故①错误;②3xy 2﹣2xy 2=xy 2,故②错误;③3ab ﹣2ab =ab ,故③正确;④(﹣2)3﹣(﹣3)2=﹣17,故④正确,故选:B .9.(2021秋•凌海市期中)多项式x 2―3kxy ―3y 2+13xy ―8合并同类项后不含xy 项,则k的值是( )A.13B.16C.19D.0【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程,即可求出k的值.【解析】原式=x2+(13―3k)xy﹣3y2﹣8,因为不含xy项,故13―3k=0,解得:k=1 9.故选:C.10.(2021秋•东海县期中)代数式7a3﹣6a3b+3a2b+3a2+6a3b﹣3a2b﹣10a3的值( )A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关【分析】把代数式7a3﹣6a3b+3a2b+3a2+6a3b﹣3a2b﹣10a3合并同类项后,再判断它的值与什么有关.【解析】7a3﹣6a3b+3a2b+3a2+6a3b﹣3a2b﹣10a3=(7﹣10)a3+(﹣6+6)a3b+(3﹣3)a2b+3a2=﹣3a3+3a2所以代数式的值只与a有关.故选:B.二.填空题(共8小题)11.(2020秋•汕尾期末)单项式3x m y2与﹣2x5y n是同类项,则m+n= 7 .【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解析】由题意得:m=5,n=2,∴m+n=5+2=7.故答案为:7.12.(2021春•雨花区校级期中)单项式3x m+4y3与12x2y n﹣1是同类项,则m n= 16 .【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,再代入所求式子计算即可.【解析】因为单项式3x m+4y3与12x2y n﹣1是同类项,所以m+4=2,n﹣1=3,解得m=﹣2,n=4,所以m n=(﹣2)4=16.故答案为:16.13.(2021秋•滨湖区期中)若3x m﹣1y3与﹣5xy3是同类项,则m= 2 .【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m的值.【解析】∵3x m﹣1y3与﹣5xy3是同类项,∴m﹣1=1,解得:m=2.故答案为:2.14.(2021秋•丰台区校级期中)已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n= ﹣1.5 .【分析】先合并同类项,然后根据多项式不含二次项可知5m=0,2n+3=0,从而可求得m、n的值,然后代入计算即可.【解析】﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.15.(2020•黔南州)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n= 9 .【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【解析】∵a m﹣2b n+7与﹣3a4b4的和仍是一个单项式,∴m﹣2=4,n+7=4,解得:m=6,n=﹣3,故m﹣n=6﹣(﹣3)=9.故答案为:9.16.(2018秋•常州期中)若―12x a y3与2x2y b3的和仍是单项式,则a﹣b= ﹣1 .【分析】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,得出a,b的值,进而解答即可.【解析】若―12x a y3与2x2y b3的和仍是单项式,可得:a=2,b=3,所以a﹣b=2﹣3=﹣1,故答案为:﹣117.(2017•青海)若单项式2x 2y m 与―13x n y 4可以合并成一项,则n m = 16 .【分析】根据同类项的定义计算.【解析】由题意得,n =2,m =4,则n m =16,故答案为:16.18.(2021秋•勃利县期末)当k = 125 时,代数式x 6﹣5kx 4y 3﹣4x 6+15x 4y 3+10中不含x 4y 3项.【分析】根据合并同类项的法则,合并同类项时把系数相加减,字母与字母的指数不变.【解析】代数式x 6﹣5kx 4y 3﹣4x 6+15x 4y 3+10中不含x 4y 3项,即﹣5kx 4y 3和15x 4y 3合并以后是0,则得到﹣5k +15=0,∴k =125.答:当k =125时,代数式x 6﹣5kx 4y 3﹣4x 6+15x 4y 3+10中不含x 4y 3项.三.解答题(共5小题)19.(2020秋•天心区校级月考)化简:(1)12m 2﹣3mn 2+4n 2+12m 2+5mn 2﹣4n 2.(2)7a 2﹣2ab +b 2﹣5a 2﹣b 2﹣2a 2﹣ab .【分析】根据合并同类项法则化简即可.【解析】(1)原式=(12m 2+12m 2)+(5mn 2―3mn 2)+(4n 2―4n 2)=m 2+2mn 2;(2)原式=(7a 2﹣5a 2﹣2a 2)﹣(2ab +ab )+(b 2﹣b 2)=﹣3ab .20.(2020秋•东莞市校级期中)化简:(1)﹣3x 2y +3xy 2﹣2xy 2+2x 2y ;(2)2a 2﹣5a +a 2+6+4a ﹣3a 2.【分析】合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变,据此计算即可.【解析】(1)﹣3x2y+3xy2﹣2xy2+2x2y=(﹣3x2y+2x2y)+(3xy2﹣2xy2)=﹣x2y+xy2;(2)2a2﹣5a+a2+6+4a﹣3a2=(2a2+a2﹣3a2)+(4a﹣5a)+6=﹣a+6.21.(2020秋•射洪市期中)如果关于字母x的二次多项式﹣3x2+mx﹣5+nx2﹣x+3的值与x 的取值无关,求m2+2mn+n2的值.【分析】根据题意求出m与n的值,然后代入原式即可求出答案.【解析】﹣3x2+mx﹣5+nx2﹣x+3=(n﹣3)x2+(m﹣1)x﹣2,由题意可知:n﹣3=0,m﹣1=0,∴m=1,n=3,∴原式=(m+n)2=42=16.22.(2019秋•双清区期末)(1)关于x,y的多项式4x2y m+2+xy2+(n﹣2)x2y3+xy﹣4是七次四项式,求m和n的值;(2)关于x,y的多项式(5a﹣2)x3+(10a+b)x2y﹣x+2y+7不含三次项,求5a+b的值.【分析】(1)根据多项式的有关定义得到2+m+2=7,n﹣2=0,然后解方程即可;(2)根据多项式的有关定义得到5a﹣2=0且10a+b=0,所以5a=2,b=﹣4,然后利用整体代入的方法计算5a+b.【解析】(1)根据题意得2+m+2=7,n﹣2=0,解得m=3,n=2;(2)根据题意得5a﹣2=0且10a+b=0,所以5a=2,b=﹣4,所以5a+b=2﹣4=﹣2.23.(2020秋•吉安期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用:(1)把(a﹣b)2看成一个整体,求出3(a﹣b)2+6(a﹣b)2﹣2(a﹣b)2的结果.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值.【分析】(1)根据合并同类项法则、运用整体思想计算;(2)根据添括号法则把原式变形,把x2﹣2y=4代入计算,得到答案.【解析】(1)3(a﹣b)2+6(a﹣b)2﹣2(a﹣b)2=(3+6﹣2)(a﹣b)2=7(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9.。
装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
7.物以类聚──话说同类项知识纵横俗话说“物以类聚,人以群分”。
在数学中,我们把整式中那些含相同的字母、并且相同字母的次数也分别相同的单项式看作一类──称为同类项(like term)•,一个多项式中的同类项可以合聚在一起──称为合并同类项(unite like term)•。
整式的加减实质就是去括号合并同类项。
整式的加减这一章涉及到许多概念,准确地掌握这些概念并注意它们的区别与联系是解相关问题的基础,归纳起来就是要注意以下几点:理解“三式”和“四数”的概念、熟悉“两种排列”、掌握三个法则。
解与整式加减相关问题时,有括号先去括号,有同类项先合并同类项,这样能使解题过程大为简化。
例题求解【例1】当x的取值范围为_______时,式子-4x+│4-7x│-│1-3x│+4•的值恒为一个常数,这个值是_________. (北京市“迎春杯”竞赛题)思路点拨去掉绝对值符号、合并同类项后,式子应不再含“x”的项,•由此得出x 的取值范围。
解:x≥47.提示:x的系数之和为零,须使4-7x≤0且1-3x≤0【例2】已知a+b=0,a≠b,则化简ba(a+1)+ab(b+1)得( ).A.2aB.2bC.+2D.-2(第15届江苏省竞赛题) 思路点拨由已知条件可推得多个关系式,这是解本例的关键.解:选D.提示:由已知得ba=ab=-1,-a-b=0.【例3】已知x=2,y=-4时,代数式ax3+12by+5=1997,求当x=-4,y=-12时,代数式3ax-24by3+4986的值.思路点拨一般的想法是先求出a、b的值,这是不可能的(为什么?)解本例的关键是:将给定的x、y值分别代入对应的代数式,寻找已知式与待求式之间的联系,•整体代入求值.解:1998 提示:由已知得4a-b=996,待求式=-3(4a-b)+4986.【例4】已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5,当x=2时的值为-17,•求当x=-2时,该多项式的值. (“希望杯”邀请赛培训题) 思路点拨设法求出a、b的值,解题的突破口是根据多项式降幂排列、•多项式次数等概念挖掘隐含的关于a、b的等式.解:-1 提示:整理原多项式得(a+1)x3+(2b-a)x2+(b+3a)x-5,由题意得a+1=0,•得a=-1,b=-1.【例5】(1)已知:5│(x+9y)(x,y为整数),求证:5│(8x+7y).(2)试证:每个大于6的自然数n都可表示为两个大于1且互质的自然数之和.思路点拨:(1)尝试把8x+7y写成x+9y的倍数与5的倍数的代数和的形式,(2)逆用整式的加减,将每一类自然数表示为两个式子的和,并证明它们互质,注意分类讨论.解:(1)8x+7y=8(x+9y)-65y.(2)①若n为奇数,设n=2k+1,k为大于2的整数,则n=k+(k+1),由于显然(k,k+•1)=1,故此表示合乎要求.②若n为偶数,则可设n=4k或n=4k+2,k为大于1的自然数.当n=4k时,可写n=(2k-1)+(2k+1),并且易知2k-1与2k+1互质,因为,若它们有公因子d≥2,则d│2,但2k-1•与2k+1均为奇数,此不可能.当n=4k+2时,则可写n=(2k-1)+(2k+3),且易知2k-1与2k+•3互质,因为,若它们有公因子d≥2,设2k-1=nd,2k+3=md,m、n均为自然数,则得(m-•n)d=4,可见d│4,矛盾.学力训练一、基础夯实:1.已知2a x b n-1与-3a2b2m是同类项,那么(2m-n)x=__________.(第12届江苏省竞赛题)2.已知代数式(2x2+ax-y+6)-(2bx2-3x+5y-1).(1)当a=_______,b=________时,此代数式的值与字母x的取值无关;(2)在(1)的条件下,多项式3(a2-2ab-b2)-(4a2+ab+b2)的值为__________.3.已知a=1999,则│3a3-2a2+4a-1│-│3a3-3a2+3a-2001│=_________.4.已知当x=-2时,代数式ax+bx+1的值为6,那么当x=2时,代数式ax3+bx+1•的值是_______.5.火车站和机场都为旅客提供打包服务,如果长、宽、高分别为x、y、z的箱子按如图的方式打包,则打包带的长至少为( ).A.4x+4y+10zB.x+2y+3zC.2x+4y+6zD.6x+8y+6z (2003年太原市中考题)6.同时都含有字母a、b、c,且系数为1的7次单项式共有( ).A.4个B.12个C.15个D.25个 (北京市竞赛题)7.有理数a、b、c在数轴上的位置如图所示: 则代数式│a│-│a+b│+│c-•a│+│b-c│化简后的结果是( )A.2-aB.2a-2bC.2c-aD.a8.已知-m+2n=5,那么5(m-2n)2+6n-3m-60的值为( )A.80B.10C.210D.409.把一个正方体的六个面分别标上字母A、B、C、D、E、F并展开如图所示,•已知:A=x2-4xy+3y2,C=3x2-2xy-y2,B=12(C-A),E=B-2C,•若正方体相对的两个面上的多项式的和都相等,求D、F.10.已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值.二、能力拓展11.对于整式6x5+5x4+4x3+3x2+2x+2002,给定x的一个数值后,•如果小颖按四则运算的规则计算该整式的值,需算15次乘法和5次加法.小明说:“有另外一种算法,只要适当添加括号,•可以做到加法次数不变,•而乘法只算5•次”.•小明同学的说法是_______的.(填“对”或“错”)12.若a-b=2,b-c=-3,c-d=5,则(a-c)(b-d)÷(a-d)=________.13.当x=2时,代数式ax3-bx+1的值等于-17,那么当x=-1时,代数式12ax-3bx3-5•的值等于_________. (北京市“迎春杯”竞赛题)14.将1,2,3,……,100这100个自然数,任意分为50组,每组两个数,•现将每组的两个数中任一数值记作a,另一个记作b,代入代数式12(│a-b│+a+b)中进行计算,•求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是_______.15.计算1+2-3-4+5+6-7-8+9+10-11-12……+1993+1994-1995-1996+1997+1998-1999-2000,最后结果是( ).A.0B.-1C.1999D.-200016.已知a<-b且ab>0,则│a│-│b│+│a+b│+│ab│等于( ).A.2a+2b+abB.-ab;C.-2a-2b+abD.-2a+ab17.已知代数式25342()x ax bx cxx dx+++当x=1时,值为1,那么该代数式当x=-1时的值是( ).A.1B.-1C.0D.2 (第11届“希望杯”邀请赛试题)18.如果对于某一特定范围内x的任意允许值,p=│1-2x│+│1-3x│+•…+•│1-9x│+│1-10x│的值恒为一常数,则此值为( ).A.2B.3C.4D.5 (安徽省竞赛题)19.(1)已知a、b为整数,且n=10a+b,如果17│a-5b,请你证明:17│n.(2)•已知一个三位数,•它的百位数字加上个位数字再减去十位数字所得的数是11的倍数,证明:这个三位数也是11的倍数.20.在一次游戏中,魔术师请一个人随意想一个三位数abc(a、b、c•依次是这个数的百位、十位、个位数字),并请这个人算出5个数acb、bac、cab与cba的和N,•把N告诉魔术师,于是魔术师就可以说出这个人所想的的数abc.现在设N=3194,请你当魔术师,求出数abc来.21.x、y、z均为整数,且11│7x+2y-5z,求证:11│3x-7y+12z.(北京市竞赛题)22.计算多项式ax3+bx2+cx+d的值时有以下3种算法,分别统计3种算法中的乘法次数.①直接计算:ax3+bx2+cx+d时共有3+2+1=6(次)乘法;②利用已有幂运算结果:x3=x2·x,计算ax3+bx2+cx+d时共有2+2+1=5(次)乘法;③逐项迭代:ax3+bx2+cx+d=[(ax+b)x+c]x+d,其中等式右端运算中含有3次乘法.请问:(1)分别使用以上3种算法,统计算式a0x10+a1x9+a2x8+…a9x+a10中乘法的次数,并比较3种算法的优劣.(2)对n次多项式a0x n+a1x n-1+a2x n-2+…a n-1x+a n(其中a0,a1,a2,…,a n为系数,n>1),分别使用以上3种算法统计其中乘法的次数,并比较3种算法的优劣.答案:1.12.(1)-3,1 (2)8.3.40000004.-45.C6.C7.A8.A9.D=•3x2-7y+4y2,F=9x2-11xy+2y210.12 提示:由题意得b=m-1=n,c=2n-1=m,0.625a=0.25+(-0.125).11.对 12.-1213.2214.3775 提示:不妨设a>b,原式=a,•由此知每组数的两个数代入代数式运算后的结果为两个数中较大的一个,从整体考虑,只要将51,52,53,…,100这50•个数依次代入每一组中,便可得50个值的和的最大值.15.D 16.D 17.B 18.B 提示:2+3+…+9+10=54,而8+9+10=27.19.(1)提示:n=10a+b=10a-50b+51b=10(a-5b)+51b;(2)略20.提示:将abc也加到和N上,由于a、b、•c•在每一位上都恰好出现两次,•所以abc+N=222(a+b+c) ①从而1000+3194>222(a+b+c)>3194,于是15≤a+b+c≤18.因为222×15-3194=136,222×16-3184=358,222×17-3194=580,222×18-3194=802.其中只有3+5+8=16满足要求,即能使①成立,故abc=358.21.提示:4(3x-7y+12z)=11(3x-2y+3z)-3(7y+2y-5z).22.(1)3种算法中乘法的次数分别为:①10+9+8+…+2+1=55(次);②2×9+1=19(•次);③10次.(2)乘法次数分别为:①n+(n-1)+…+3+2+1=(1)2n n(次);②2(n-1)+1=2n-•1(次);③n次.。
07 整式的加减阅读与思考整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:1.透彻理解“三式”和“四数”的概念“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数.2.熟练掌握“两种排列”和“三个法则”“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项.例题与求解[例1] 如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______.(江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手.[例2] 已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( )A.a+b B.a-b C.a+b2 D.a2+b(“希望杯”初赛试题)解题思路:采用赋值法,令a=12,b=-12,计算四个式子的值,从中找出值最大的式子.[例3] 已知x=2,y=-4时,代数式ax2+12by+5=1997,求当x=-4,y=-12时,代数式3ax-24by3+4986的值.(北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y 值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4] 已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值.(北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式.[例5] 一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?(“希望杯”初赛试题) 解题思路:前7站上车总人数等于第2站到第8站下车总人数.本例目的是求第8站下车人数比第7站上车人数多出的数量.[例6] 能否找到7个整数,使得这7个整数沿圆周排列成一圈后,任3个相邻数的和等于29?如果,请举出一例;如果不能,请简述理由.(“华罗庚金杯”少年邀请赛试题) 解题思路:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排成一圈后,满足题意,由此展开推理,若推出矛盾,则假设不成立.能力训练A级1.若-4x m-2y3与23x3y7-2n是同类项,m2+2n=______.(“希望杯”初赛试题)2.当x=1,y=-1时,ax+by-3=0,那么当x=-1,y=1时,ax+by-3=______.(北京市“迎春杯”竞赛试题) 3.若a+b<0,则化简|a+b-1|-|3-a-b|的结果是______.4.已知x2+x-1=0,那么整式x3+2x2+2002的值为______.5.设2332,4536,x y zx y z++=⎧⎨++=⎩则3x-2y+z=______.(2013年全国初中数学联赛试题)6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0,则C=( ).A.5a2+3b2+2c2 B.5a2-3b2+4c2A.3a2-3b2-2c2 A.3a2+b2+4c27.同时都有字母a,b,c,且系数为1的7次单项式共有( ).A.4个 B.12个 C.15个 D.25个(北京市竞赛题)8.有理数a ,b ,c 在数轴上的位置如图所示:则代数式|a |-|a +b |+|c -a |+|b -c |化简后的结果是为( ). A .-a B .2a -2b C .2c -a D .a 9.已知a +b =0,a ≠b ,则化简b a (a +1)+a b(b +1)得( ). A .2a B .2b C .+2 D .-2 10.已知单项式0.25x b y c与单项式-0.125xm -1y 2n -1的和为0.625ax n y m,求abc 的值.11.若a ,b 均为整数,且a +9b 能被5整除,求证:8a +7b 也能被5整除.(天津市竞赛试题)B 级1.设a <-b <c <0,那么|a +b |+|b +c |-|c -a |+|a ||+b |+|c |=______.(“祖冲之杯”邀请赛试题)2.当x 的取值范围为______时,式子-4x +|4-7x |-|1-3x |+4的值恒为一个常数,这个值是______.(北京市“迎春杯”竞赛试题)3.当x =2时,代数式ax 3-bx +1的值等于-17,那么当x =-1时,代数式12ax -3bx 3-5的值等于______.4.已知(x +5)2+|y 2+y -6|=0,则y 2-15xy +x 2+x 3=______.(“希望杯”邀请赛试题)5.已知a -b =2,b -c =-3,c -d =5,则(a -c )(b -d )÷(a -d )=______.6.如果对于某一特定范围内x 的任意允许值,P =|1-2x |+|1-3x |+…+|1-9x |+|1-10x |的值恒为一个常数,则此值为( ).A .2B .3C .4D .5(安徽省竞赛试题)7.如果(2x -1)6=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,那么a 0+a 1+a 2+a 3+a 4+a 5+a 6等于______;a 0+a 2+a 4+a 6等于______.A .1,365B .0,729C .1,729D .1,第8题图(“希望杯”邀请赛试题)8.设b ,c 是整数,当x 依次取1,3,6,11时,某学生算得多项式x 2+bx +c 的值分别为3,5,21,93.经验证,只有一个结果是错误的,这个错误的结果是( ).A .当x =1时,x 2+bx +c =3 B .当x =3时,x 2+bx +c =5 C .当x =6时,x 2+bx +c =21 D .当x =11时,x 2+bx +c =93(武汉市选拔赛试题)9.已知y =ax 7+bx 5+cx 3+dx +e ,其中a ,b ,c ,d ,e 为常数,当x =2时,y =23;当x =-2时,y =-35,那么e 的值是( ).A .-6B .6C .-12D .12(吉林省竞赛试题)10.已知a ,b ,c 三个数中有两个奇数,一个偶数,n 是整数,如果s =(a +n +1)·(b +2n +2)(c +3n +3),那么( ).A .s 是偶数B .s 是奇数C .s 的奇偶性与n 的奇偶性相同D .s 的奇偶性不能确定(江苏省竞赛试题)11.(1)如图1,用字母a 表示阴暗部分的面积; (2)如图2,用字母a ,b 表示阴暗部分的面积;(3)如图3,把一个长方体礼品盒用丝带打上包装(图中虚线为丝带),打蝴蝶结的部分需丝带(x -y )cm ,打好整个包装需用丝带总长度为多少?12.将一个三位数abc 中间数码去掉,成为一个两位数ac ,且满足abc =9ac +4c ,如155=9×15+4×5.试求出所有这样的三位数.xy z 图3图107 整式的加减例1 -17例2 B例3 1998提示:由已知得4a-b=996,待求式=-3×(4a-b)+4986.例4 原多项式整理得:(a+1)x3+(2b-a)x3+(3a+b)x-5..又由题意知,该多项式为二次多项式,故a+1=0,得a=-1.把a=-1,a=2代入得:4(2 b+1)+2×(b-3)-5=-17.解得b=-1,故原多项式为-x2-4 x-5.当x=-2时,-x2-4 x-5=-4+8-5=-1.例5 设前7站上车的乘客数量依次为a1,a2,a3,a4,a5,a6,a7人,从第2站到第8站下车的乘客数量依次为b2,b3,b4,b5,b6,b7,b8人,则a1+a2+a3+a4+a5+a6+a7=b2+b3+b4+b5+b6+b7+b8.又∵a1+a2+a3+a4+a5+a6=100,∴b2+b3+b4+b5+b6+b7=80,即100+a7=80+b 8,前6站上车而在终点下车的人数为b8-a7=100-80=20(人).例6 如图,由题意得a1+a2+a3=29,a2+a3+a4=29,…a6+a7+a 1=29,a7+a1+a 2=29,将上述7式相加得,3(a1+a2+a3+a4+a5+a6+a7)=29×7.∴a1+a2+a3+a4+a5+a6+a7=6723.这与a1+a2+a3+a4+a5+a6+a7为整数矛盾.故不存在满足题设要求的7个整数.A级1. 292. -63. -24.20035. 10 提示:3 x-2 y+z=2×(2 x+y+3 z)-(x+4 y+5 z)=2×23-36=46-36=10.6. C7. C提示:设满足条件的单项式为a m b n c p的形式,其中m,n,p为自然数,且m+n+p=7.8. C 9. D10. 1.2 提示:由题意得b=m-1=n,c=2 n-1=0,0.625 a=0.25+(-0.125).11. 提示:8 a+7 b=8(a+9 b)-65 b.B级1. -a+b+c2. ≥471 提示:x的系数之和为零,须使4-7 x≤0且1-3 x≤0.3. 224. -94 提示:由(x+5)2+| y 2+y-6|=0得x=-5,y 2+y=6. y 2-15x y+x 2+x 3=y 2+y+(-5)2+(-5)3=6+25-125=-94.5. -1 26. B 提示:利用绝对值的几何意义解此题. x的取值范围在18与17之间7. A提示:令x=1,可得a0+a1+a2+a3+a4+a5+a6=[2×1-1] 6=1①令x=-1,可得a0-a1+a2-a3+a4-a5+a6=[2×(-1)-1] 6=3 6=729②①+②,得2(a0+a2+a4+a6)=730,即a0+a2+a4+a6=365.8. C 9. A10. A提示:原式=a+b+c+6n+6是偶数.11. 提示:(1)4.5πa2 S阴影=12(a+a+a)2=4.5πa2(2)12ab-12b2+14πb2 S阴影=12(a+a)b-(b2-14πb2)=12a b-12b 2+14πb2(3)3 x+3 y+2 z总长1=2 x+4 y+2 z+(x-y)=3 x+3 y+2 z.12. 因为abc=100 a+10 b+c,ac=10a+c.由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b)=6c(0≤a,b,c≤9,且a≠0)又∵5是质数,故5,6,ca b=⎧⎨+=⎩,从而1,2,3,4,5,6,5,4,3,2,1,0,ab=⎧⎨=⎩则符合条件的abc=155,245,335,425,515,605.。
2022七年级上学期数学寒假作业答案寒假也到了,那么在这个时候就认真写好寒假作业,如果对答案不确定,可以来看看答案哦。
下⾯是⼩编给⼤家带来的2022七年级上学期数学寒假作业答案,希望能帮助到⼤家!2022七年级上学期数学寒假作业答案1.⾛进美妙的数学世界答案1.9(n-1)+n=10n-92.6303. =36%4.133,23 2000=24?×53 ?5.?2520,?a=2520n+16.A7.C8.B9.C 10.C11.6个,95 这个两位数⼀定是2003-8=1995的约数,⽽1995=3×5×7×1912. 13.14.观察图形数据,归纳其中规律得:n棱柱有(n+2)个⾯,2n个顶点,3n?条棱.? ?15.D 16.A 17.C S不会随t的增⼤则减⼩,修车所耽误的⼏分钟内,路程不变,?修完车后继续匀速⾏进,路程应增加.18.C 9+3×4+2×4+1×4=33. 19.略20.(1)(80-59)÷59×100%≈36% (2)13÷80×100%≈16% ?(3)?1995?年~1996年的增长率为(68-59)÷59×100%≈15%,同样的⽅法可得其他年度的增长率,增长率最⾼的是1995年~1996年度.21.(1)⼄商场的促销办法列表如下:购买台数 111~8台 9~16台 17~24台 24台以上每台价格 720元 680元 640元 600元(2)⽐较两商场的促销办法,可知:购买台数 1~5台 6~8台 9~10台 11~15台选择商场⼄甲、⼄⼄甲、⼄购买台数 16台 17~19台 20~24台 24台以上选择商场甲甲、⼄甲甲、⼄因为到甲商场买21台VCD时共需600×21=12600元,⽽到⼄商场买20?台VCD?共需640×20=12800元,12800>12600,所以购买20台VCD时应去甲商场购买.所以A单位应到⼄商场购买,B单位应到甲商场购买,C单位应到甲商场购买.22.(1)根据条件,把可分得的边长为整数的长⽅形按⾯积从⼩到⼤排列,有1×1,1×2,1×3,1×4,2×2,1×5,2×3,2×4,3×3,2×5,3×4,3×5.若能分成5张满⾜条件的纸⽚,因为其⾯积之和应为15,所以满⾜条件的有1×1,1×2,1×3,1×4,1×5(如图①)或1×1,1×2,1×3,2×2,1×5(如图②)2.从算术到代数答案1.n2+n=n(n+1)2.1093.4.150分钟5.C6.D7.B8.B9.(1)S=n2 (2)①100 ②132-52=144 (3)n=1510.(1)a得 = .11.S=4n-4 12. b2 13.595 14.(1)18;(2)4n+215.A 设⾃然数从a+1开始,这100个连续⾃然数的和为(a+1)+(a+2)+?…+(a+100)=100a+5050.16.C 第⼀列数可表⽰为2m+1,第⼆列数可表⽰为5n+1,由2m+1=5n+1,得n= m,m=0,5,10?100018.D 提⽰:每⼀名同学每⼩时所搬砖头为块,c名同学按此速度每⼩时搬砖头块.19.提⽰:a1=1,a2= ,a3= ??,an= ,原式= .20.设每台计算器x元,每本《数学竞赛讲座》书y元,则100(x+3y)=80(x+5y),解得x=5y,故可购买计算器=160(台),书 =800(本).(2)若能分成6张满⾜条件的纸⽚,则其⾯积之和仍应为15,?但上⾯排在前列的6个长⽅形的⾯积之和为1×1+1×2+1×3+1×4+2×2+1×5=19>15.所以分成6?张满⾜条件的纸⽚是不可能的.3.创造的基⽯——观察、归纳与猜想答案1.(1)6,(2)2003.2.a+b=c+d-14或a+c=b+d-2或a+d=b+c3.13,3n+14.?C5.B 提⽰:同时出现在这两个数串中的数是1~1999的整数中被6除余1的数,共有334个.6.C7.提⽰:观察已经写出的数,发现每三个连续数中恰有⼀个偶数,在前100项中,?第100项是奇数,前99项中有=33个偶数.8.提⽰:经观察可得这个⾃然数表的排列特点:①第⼀列的每⼀个数都是完全平⽅数,并且恰好等于它所在⾏数的平⽅,即第n⾏的第1个数为n2;②第⼀⾏第n?个数是(n-1)2+1;③第n⾏中从第⼀个数⾄第n个数依次递减1;④第n列中从第⼀个数⾄第n个数依次递增1.这样可求:(1)上起第10⾏,左起第13列的数应是第13列的第10个数,即[(13-1)2+1]+9=154.(2)数127满⾜关系式 127=112+6=[(12-1)2+1]+5,即127在左起12列,上起第6?⾏的位置.9.(1)(2n+1)(2n+3)=4(n+1)2-1;(2) ,- 各⾏数的个数分别为1,2,3,? ,求出第1⾏⾄第198⾏和第1⾏⾄第1997⾏共有多少个问题就容易解决.10.7n+6,285 11.林 12.S=7×4(n-1)-5n=23n-8(n≥3) 13.B 14.C15.(1)提⽰:是,原式= × 5;(2)原式= 结果中的奇数数字有n-1个.16.(1)略;(2)顶点数+⾯数-棱数=2;(3)按要求画图,验证(2)的结论.17.(1)⼀般地,我们有(a+1)+( )= = =(a+1)?(2)类似的问题如:①怎样的两个数,它们的差等于它们的商? ②怎样的三个数,它们的和等于它们的积?4.相反数与绝对值答案1.(1)A;(2)C;(3)D2.(1)0;(2)144;(3)3或-9.3.a=0,b= .原式=-4.0,±1,±2,?,±1003.其和为0.5.a=1,b=2.原式= .6.a-c7.m= -x3,n= +x.∵m=( +x)( +x2-1)=n[( +x)2-3]=n(n2-3)=n3-3n.8.p=3,q=-1.原式=669×3-(-1)2=2006.5.物以类聚——话说同类项答案1.12.(1)-3,1 (2)8.3.40000004.-45.C6.C7.A8.A9.D=?3x2-7y+4y2,F=9x2-11xy+2y210.12 提⽰:由题意得b=m-1=n,c=2n-1=m,0.625a=0.25+(-0.125).11.对 12.- 13.2214.3775 提⽰:不妨设a>b,原式=a,?由此知每组数的两个数代⼊代数式运算后的结果为两个数中较⼤的⼀个,从整体考虑,只要将51,52,53,?,100这50?个数依次代⼊每⼀组中,便可得50个值的和的最⼤值.15.D 16.D 17.B 18.B 提⽰:2+3+?+9+10=54,⽽8+9+10=27.6.⼀元⼀次⽅程答案1.-105.2.设原来输⼊的数为x,则 -1=-0.75,解得x=0.23.- ;904. 、-5.?D ?6.A7.A8.B9.(1)当a≠b时,⽅程有惟⼀解x= ;当a=b时,⽅程⽆解;(2)当a≠4时,?⽅程有惟⼀解x= ;当a=4且b=-8时,⽅程有⽆数个解;当a=4且b≠-8时,⽅程⽆解;(3)当k≠0且k≠3时,x= ;当k=0且k≠3时,⽅程⽆解;当k=3时,⽅程有⽆数个解.10.提⽰:原⽅程化为0x=6a-12.(1)当a=2时,⽅程有⽆数个解;当a≠2时,⽅程⽆解.11.10.5 12.10、26、8、-8 提⽰:x= ,9-k│17,则9-k=±1或9-k=±17.13.2000 提⽰:把( + )看作⼀个整体. 14.1.5 15.A 16.B 17.B18.D 提⽰:x= 为整数,⼜2001=1×3×23×29,k+1可取±1、±3、±23、?±29、±(3×23)、±(3×29)、±(23×29)、±2001共16个值,其对应的k值也有16个.19.有⼩朋友17⼈,书150本. 20.x=521.提⽰:将x=1代⼊原⽅程并整理得(b+4)k=13-2a,此式对任意的k值均成⽴,即关于k的`⽅程有⽆数个解.故b+4=0且13-2a=0,解得a= ,b=-4.22.提⽰:设框中左上⾓数字为x,则框中其它各数可表⽰为:x+1,x+2,x+3,x+?7,x+8,x+9,x+10,x+14,x+15,x+16,x+17,x+21,x+22,x+23,x+24,由题意得:x+(x+1)+(x+2)+(x+3)+?x+24=1998或1999或2000或2001,即16x+192=?2000?或2080解得x=113或118时,16x+192=2000或2080⼜113÷7=16?余1,即113是第17排1个数,该框内的最⼤数为113+24=137;118÷7=16?余6,即118是第17排第6个数,故⽅框不可框得各数之和为2080.7.列⽅程解应⽤题——有趣的⾏程问题答案1.1或32.4.83.6404.16提⽰:设再过x分钟,分针与时针第⼀次重合,分针每分钟⾛6°,时针每分钟⾛0.5°, 则6x=0.5x+90+0.5×5,解得x=16 .5.C6.C 提⽰:7.168.(1)设CE长为x千⽶,则1.6+1+x+1=2×(3-2×0.5),解得x=0.4(千⽶)(2)若步⾏路线为A→D→C→B→E→A(或A→E→B→C→D→A)则所⽤时间为:(1.6+1+1.2+0.4+1)+3×0.5=4.1(⼩时);若步⾏路线为A→D→C→E→B→E→A(?或A→E→B→E→C→D→A),则所⽤时间为: (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(⼩时),因为4.1>4,4>3.9,所以,步⾏路线应为A→D→C→E→B→E→A(或A→E→B→E→C→D→A).9.提⽰:设此⼈从家⾥出发到⽕车开车的时间为x⼩时,由题意得:30(x- )=18(x+ ),解得x=1,此⼈打算在⽕车开车前10分钟到达⽕车站,骑摩托车的速度应为: =27(千⽶/⼩时)10.7.5 提⽰:先求出甲、⼄两车速度和为 =20(⽶/秒)11.150、200提⽰:设第⼀辆车⾏驶了(140+x)千⽶,则第⼆辆⾏驶了(140+x)?× =140+(46 + x)千⽶,由题意得:x+(46 + x)=70.12.66 13.B14.D 提⽰:设经过x分钟后时针与分针成直⾓,则6x- x=180,解得x=3215.提⽰:设⽕车的速度为x⽶/秒,由题意得:(x-1)×22=(x-3)×26,解得x=14,?从⽽⽕车的车⾝长为(14-1)×22=286(⽶).16.设回车数是x辆,则发车数是(x+6)辆,当两车⽤时相同时,则车站内⽆车,?由题意得4(x+6)=6x+2,解得x=11,故4(x+6)=68.即第⼀辆出租车开出,最少经过68分钟时,车站不能正点发车8.列⽅程解应⽤题——设元的技巧答案1.2857132.设这个班共有学⽣x⼈,在操场踢⾜球的学⽣共有a⼈,1≤a≤6,由 +a =x,?得x= a, ⼜3│a,故a=3,x=28(⼈).3.244.C5.B提⽰:设切下的每⼀块合⾦重x克,10千克、15千克的合⾦含铜的百分⽐分别为a、b(a≠b),则 ,整理得(b-a)x=6(b-a),故x=6.6.B 提⽰:设⽤了x⽴⽅⽶煤⽓,则60×0.8+1.2(x-60)=0.88x.7.设该产品每件的成本价应降低x元,则[510×(1-4%)-(400-x)]×(1+10%)m=?(510-400)m 解得x=10.4(元)8.18、15、14、4、8、10、1、9.1:4 提⽰:设原计划购买钢笔x⽀,圆珠笔y⽀,圆珠笔的价格为k元,则(2kx-?ky)×(1+50%)=2ky+kx,解得y=4x.10.282.6m 提⽰:设胶⽚宽为amm,长为xmm,则体积为0.15axm3,盘上所缠绕的胶⽚的内、外半径分别为30mm和30+015×600=120(mm),其体积⼜可表⽰为 (120-30)?a=13500a(m3),于是有0.15ax=13500a ,x=90000 ≈282600,胶⽚长约282600mm,即282.6mm.寒假⽇记由于天⽓太冷了,加上我有些发烧咳嗽好长⼀段时间我都没有出去长跑。