第二章 导数与微分
- 格式:ppt
- 大小:2.76 MB
- 文档页数:150
1、极限的实质是:动而不达导数的实质是:一个有规律商的极限。
规律就是:2、导数的多种变式定义:lim 丄一x)f°)是描述趋近任意 x 时的斜率。
而x 03、I若x 没趋近到x0,那么除法得到的值是这段的平均斜率, 如果趋近到了 x0,得到的就是这点的斜率一一导数。
4、可导与连续的关系:1基础总结lim -= limx 0 x x 0 f(x X)f(x)xlim x x o f(x )f (x o )X o叫 号严可以刻画趋近具体x0时的斜率。
lim o要注意细心观察发现,导数的实质是定义在某点的左右极限。
既然定义在了某点上,该点自然存在,而 且还得等于左右极限。
因此,可导一定是连续的。
反之,如果连续,不一定可导。
不多说。
同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定 极限有可能存在,但是导数绝不会存在。
同理要注意左右导数的问题。
如果存在左或者右导数,那么在左侧该点一定是存 在的。
如:f(x) x,x 0这个函数,在0点就不存在左导数,只存在右导数。
为什么嫩?看定义:万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该 点必须存在! 由此引发了一些容易误判的血案: 例如:A 旦主^謎IC m F 左电鼓 pg 总生戟乞f ( x) f (x)-中的f(x))至u 底是神马。
比如求上图limf(x x) f(x)x 0xlimf(X X)f(0)。
x 0定义里面需要用到f(0)啊!因此,千中 iimf (x)论) x 1x x 0,这个f(x0)千万要等于2/3,而不是1 !定义解决时候一定要注意问。
X X o由此也可以知道,f (x)2x 3, x 1这个函数是不存在导数的,也不存在左导数,3只存在右导数。
5、反函数的导数与原函数的关系:注意,求反函数时候不要换元。
因为换了元虽然对自身来讲函数形式不变, 与原函数融合运算时候就算是换了一个不是自己反函数的一个函数进行运算 果显然是错误的。
大一上学期《高等数学》知识整理-第二章导数与微分第二章导数与微分1.导数的定义。
对于一个在x0的某个邻域内有定义的函数,当自变量x在x0处取得增量Δx时,相应地函数y取得增量Δy=f(x0+Δx)-f(x0),如果当Δx→x0时Δy/Δx的极限存在,则称函数y=f(x)在x0点可导,并称这个极限为函数y=f(x)在x0处的导数。
通俗地讲,就是描述某个函数在某点增长或下降的瞬时速度,这个“速度”的单位为y每x,即每变化一个单位的x,y变化多少。
与物理学中定义米/秒是一个性质的。
把函数f(x)的导数看做是关于x的函数,即得到函数f(x)的导函数f'(x),简称导数。
(以上的“x0”中的“0”都是x 的下标,下同。
)导数也可以用微分的形式记作dy/dx,这个后面会提及。
2.在导数的定义中,如果Δx从左边趋向x0或从右边趋向x0,那么对应的导数被称为左导数和右导数。
只有f(x)在x0处的左导数和右导数相等,才能称f(x)在x0处可导。
举个例子,绝对值函数y=|x|,其在x=0处的左导数是-1(即x每增大1,y减小1),右导数是1,两者不相等,所以该函数在x=0处不可导。
如图所示。
绝对值函数y=|x|的导数是符号函数y=sgn(x),但是不包含x=0(单独的符号函数y=sgn(x),当x=0时,y=0)。
3.用定义法可以求初等函数的导数,本质上就是求极限。
比如说求y=x²在x=a处的导数,即就是求Δx→0时((a+Δx)²-a²)/Δx的极限。
求得结果为2a了解即可,还不如求导公式来得快。
下图为求该极限的过程,也就是用定义求y=x²的导数的过程。
4.函数的可导性与连续性的关系。
我们有定理:如果函数y=f(x)在点x0处可导,则f(x)在x0处必连续。
但反过来就不一定了。
归纳为一句话:连续不一定可导,可导一定连续。
y=|x|就是一个例子。
该函数在定义域内处处连续但是在x=0时不可导(因为左右极限不一样)。
第二章 导数与微分数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. . 本章及下一章将介绍一元函数微分学及其应用的内容.第一节 导数概念下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度;(2) 求曲线上一点处的切线;(3) 求最大值和最小值.这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 内容要点: 1 导数的定义 2左右导数3导数的几何意义 4函数的可导性与连续性的关系一、引例1、直线运动速度设描述质点运动位置的函数为()s f t =,匀速时:tsv 时间路程=, 平均速度:tsv ∆∆=,因平均速度≠瞬时速度,则0t 到t 的平均速度为00()()f t f t v t t -=-,而0t 时刻的瞬时速度为000()()lim t t f t f t v t t →-=-2、切线问题(曲线在一点处切线的斜率)当点N 沿曲线C 趋于点M 时,若割线MN 绕点M 旋转而趋于极限位置MT ,直线MT 就称为曲线C 在点M 处的切线因0000()()tan y y f x f x yx x x x xφ--∆===--∆ [切线应为割线的极限]当N 沿曲线M C →时,0x x →,故0000()() lim lim x x x f x f x yk x x x ∆→→-∆==∆- 即为割线斜率的极限,即切线斜率。
瞬时速度000()()limt t f t f t v t t →-=-切线斜率000()()limx x f x f x k x x →-=-两个问题的共性:所求量为函数增量与自变量增量之比的极限 .二、导数的定义: 1、函数在一点处的导数设函数()y f x =在点0x 的某个邻域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x +∆仍在该邻域内)时,相应的函数y 取得增量00()()y f x x f x ∆=+∆-;如果y ∆与x ∆之比当0x ∆→时极限存在,则称函数()y f x =在点0x 处可导,并称此极限为函数()y f x =在点0x 处的导数,记为:00000()()limlim x x x x f x x f x y y x x =∆→∆→+∆-∆'==∆∆或0()f x ',x x dy dx=或()x x df x dx =即:已知()f x ,构造yx∆∆,求此增量比的极限,若极限存在,则可导,不存在就不可导(此时切线必垂直于x 轴)。