高等数学曲面及其方程
- 格式:ppt
- 大小:1.20 MB
- 文档页数:42
高等数学下册知识点第八章 空间解析几何与向量代数(一) 向量线性运算定理1:设向量a ≠0,则向量b 平行于a 的充要条件是存在唯一的实数λ,使 b =λa1、 线性运算:加减法、数乘;2、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;3、 利用坐标做向量的运算:设),,(z y x a a a a =,),,(z y x b b b b =;则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;4、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 5) 投影:ϕcos Pr a a j u=,其中ϕ为向量a 与u的夹角;(二) 数量积,向量积1、 数量积:θcos b a b a=⋅12a a a =⋅2⇔⊥b a 0=⋅b a2、 向量积:b a c⨯=大小:θsin b a ,方向:c b a,,符合右手规则 10 =⨯a a 2b a //⇔0 =⨯b a运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面:yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==0),(z y x F 的柱面4、 二次曲面1) 椭圆锥面:22222z b y a x =+ 2) 椭球面:1222222=++cz b y a x旋转椭球面:1222222=++cz a y a x3) 单叶双曲面:1222222=-+c z b y a x4) 双叶双曲面:1222222=--czb y a x5) 椭圆抛物面:z by a x =+22226) 双曲抛物面马鞍面:z b y a x =-22227) 椭圆柱面:12222=+b ya x8) 双曲柱面:12222=-b y a x9) 抛物柱面:ay x =2 (四) 空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===bt z t a y t a x sin cos3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H (五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n =,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax截距式方程:1=++czb y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n =,4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A2、 对称式点向式方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=pt z z nty y mt x x 0004、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s =,5、 直线与平面的夹角:直线与它在平面上的投影的夹角,第九章 多元函数微分法及其应用(一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集;2、 多元函数:1定义:设n 维空间内的点集D 是R 2的一个非空子集,称映射f :D →R 为定义在D 上的n 元函数;当n ≥2时,称为多元函数;记为U=fx 1,x 2,…,x n ,x 1,x 2,…,x n ∈D;3、 二次函数的几何意义:由点集D 所形成的一张曲面;如z=ax+by+c 的图形为一张平面,而z=x 2+y 2的图形是旋转抛物线;4、 极限:1定义:设二元函数fp=fx,y 的定义域D,p0x0,y0是D 的聚点D,如果存在函数A 对于任意给定的正数ε,总存在正数δ,使得当点px,y ∈D ∩∪p0,δ时,都有Ⅰfp-A Ⅰ=Ⅰfx,y-A Ⅰ﹤ε成立,那么就称常数A 为函数fx,y 当x,y →x 0,y 0时的极限,记作多元函数的连续性与不连续的定义5、 有界闭合区域上二元连续函数的性质:1在有界闭区域D 上的多元连续函数,必定在D 上有界,且能取得它的最大值和最小值;2在有界区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值; 6、 偏导数:设有二元函数z=fx,y,点x 0,y 0是其定义域D 内一点;把y 固定在y0而让x 在x0有增量△x,相应地函数z=fx,y 有增量称为对x/y 的偏增量如果△z 与△x/△y 之比当△x →0/△y →0时的极限存在,那么此极限值称为函数z=fx,y 在x0,y0处对x/y 的偏导数记作xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim ),(0000000 7、 混合偏导数定理:如果函数的两个二姐混合偏导数f xy x,y 和f yx x,y 在D内连续,那么在该区域内这两个二姐混合偏导数必相等;8、 方向导数: βαcos cos yfx f l f ∂∂+∂∂=∂∂其中βα,为l的方向角;9、 全微分:如果函数z=fx, y 在x, y 处的全增量△z=fx △x,y △y-fx,y 可以表示为△z=A △x+B △y+o ρ,其中A 、B 不依赖于△x, △y,仅与x,y 有关, 当Ρ→0,此时称函数z=fx, y 在点x,y 处可微分,A △x+ B △y 称为函数z=fx, y 在点x, y 处的全微分,记为 (二) 性质1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:微分法1) 定义: u x 2) 复合函数求导:链式法则 z若(,),(,),(,)zf u v u u x y v v x y ===,则 v yz z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z vy u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 3) 隐函数求导:两边求偏导,然后解方程组 (三) 应用充分条件1、 极值1) 无条件极值:求函数),(y x f z =的极值解方程组 ⎪⎩⎪⎨⎧==00yx f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0<A ,函数有极大值; ② 若02<-B AC ,函数没有极值; ③ 若02=-B AC ,不定;2) 条件极值:求函数),(y x f z =在条件0),(=y x ϕ下的极值 令:),(),(),(y x y x f y x L λϕ+=——— Lagrange 函数解方程组 ⎪⎪⎩⎪⎪⎨⎧===0),(00y x L L y x ϕ2、 几何应用1) 曲线的切线与法平面曲线⎪⎪⎩⎪⎪⎨⎧===Γ)()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M 对应参数为0t 处的 切线方程为:)()()(00000t z z z t y y y t x x x '-='-='- 法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x2) 曲面的切平面与法线曲面0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:法线方程为:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-第十章 重积分(一) 二重积分1、 定义:∑⎰⎰=→∆=nk k k kDf y x f 1),(lim d ),(σηξσλ2、 性质:6条3、 几何意义:曲顶柱体的体积;4、 计算: 1) 直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ,2) 极坐标 (二) 三重积分 1、 定义: ∑⎰⎰⎰=→Ω∆=nk k k k kv f v z y x f 1),,(limd ),,(ζηξλ2、 性质:3、 计算:1) 直角坐标⎰⎰⎰⎰⎰⎰=ΩDy x z y x z z z y x f y x v z y x f ),(),(21d ),,(d d d ),,( -------------“先一后二”⎰⎰⎰⎰⎰⎰=ΩZD bay x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一” 2) 柱面坐标⎪⎪⎩⎪⎪⎨⎧===zz y x θρθρsin cos ,(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰3) 球面坐标 (三) 应用 曲面D y x y x f zS ∈=),(,),(:的面积:第十二章 无穷级数(一) 常数项级数 1、 定义:1无穷级数:+++++=∑∞=n n nu u u u u3211部分和:n n k kn u u u u uS ++++==∑= 3211,正项级数:∑∞=1n n u ,0≥n u交错级数:∑∞=-1)1(n n n u ,0≥n u 2级数收敛:若S S n n =∞→lim 存在,则称级数∑∞=1n n u 收敛,否则称级数∑∞=1n n u 发散 3绝对收敛:∑∞=1n n u 收敛,则∑∞=1n n u 绝对收敛;条件收敛:∑∞=1n n u 收敛,而∑∞=1n n u 发散,则∑∞=1n n u 条件收敛;定理:若级数∑∞=1n n u 绝对收敛,则∑∞=1n n u 必定收敛;2、 性质:1) 级数的每一项同乘一个不为零的常数后,不影响级数的收敛性; 2) 级数∑∞=1n n a 与∑∞=1n n b 分别收敛于和s 与σ,,则∑∞=±1)(n n nb a收敛且,其和为s+σ3) 在级数中任意加上、去掉或改变有限项,级数仍然收敛;4) 级数收敛,任意对它的项加括号后所形成的级数仍收敛且其和不变;5) 必要条件:级数∑∞=1n n u 收敛即0lim =∞→n n u . 3、 审敛法正项级数:∑∞=1n n u ,0≥n u1) 定义:S S n n =∞→lim 存在; 2)∑∞=1n nu收敛⇔{}nS 有界;3) 比较审敛法:∑∞=1n n u ,∑∞=1n n v 为正项级数,且),3,2,1( =≤n v u n n若∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若∑∞=1n n u 发散,则∑∞=1n n v 发散.4) 比较法的推论:∑∞=1n n u ,∑∞=1n n v 为正项级数,若存在正整数m ,当mn>时,n n kv u ≤,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若存在正整数m,当mn >时,n n kv u ≥,而∑∞=1n n v 发散,则∑∞=1n n u 发散.做题步骤:①找比较级数等比数列,调和数列,p 级数1/n p ;②比较大小;③是否收敛;5) 比较法的极限形式:设∑∞=1n n u ,∑∞=1n n v 为正项级数,1若)0( lim +∞<≤=∞→l l v u n nn ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛; 2若0lim >∞→n n n v u 或+∞=∞→nnn v u lim ,而∑∞=1n n v 发散,则∑∞=1n n u 发散. 6) 比值法:∑∞=1n n u 为正项级数,设l u u nn n =+∞→1lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.7) 根值法:∑∞=1n n u 为正项级数,设l u n nn =∞→lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.8) 极限审敛法:∑∞=1n n u 为正项级数,若0lim >⋅∞→n n u n 或+∞=⋅∞→n n u n lim ,则级数∑∞=1n n u 发散;若存在1>p ,使得)0( lim +∞<≤=⋅∞→l l u n n pn ,则级数∑∞=1n n u 收敛.交错级数:莱布尼茨审敛法:交错级数:∑∞=-1)1(n n nu ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞→n n u ,则级数∑∞=-1)1(n n n u 收敛;任意项级数:∑∞=1n nu绝对收敛,则∑∞=1n nu收敛;常见典型级数:几何级数:⎪⎩⎪⎨⎧≥<∑∞=1 1 0q q aq n n发散,收敛, p -级数:⎪⎩⎪⎨⎧≤>∑∞=1p 1 11发散,收敛,p n n p(二) 函数项级数1、 定义:函数项级数∑∞=1)(n n x u ,收敛域,收敛半径,和函数;2、 幂级数:∑∞=0n nnx a收敛半径的求法:ρ=+∞→nn n a a 1lim ,则收敛半径 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=∞++∞=+∞<<=0 , ,00 ,1ρρρρR。
高等数学(下)教案曲面及其方程教学目标:1. 理解曲面的概念,掌握曲面的基本性质。
2. 学习曲面的方程表示方法,掌握常见曲面的方程。
3. 能够利用曲面方程进行曲面的绘制和分析。
教学内容:一、曲面的概念与基本性质1. 曲面的定义2. 曲面的基本性质2.1 曲面的导数2.2 曲面的切线和法线2.3 曲面的曲率2.4 曲面的切平面和法平面二、曲面的方程表示方法1. 参数方程表示法2.1 参数方程的定义2.2 参数方程的求导和积分2. 普通方程表示法2.1 普通方程的定义2.2 普通方程的求导和积分3. 柱面和二次曲面的方程3.1 柱面的方程3.2 二次曲面的方程三、常见曲面的方程1. 圆锥面的方程2. 椭圆面的方程3. 双曲面的方程4. 抛物面的方程5. 直纹面的方程四、曲面的绘制和分析1. 利用参数方程绘制曲面2. 利用普通方程绘制曲面3. 曲面的切线和法线分析4. 曲面的曲率分析5. 曲面的切平面和法平面分析教学方法:1. 采用多媒体教学,通过图形和动画展示曲面的形状和性质。
2. 通过例题讲解和练习,使学生掌握曲面方程的求解和分析方法。
3. 引导学生运用曲面方程解决实际问题,提高学生的应用能力。
教学评价:1. 课堂讲解和练习的参与度。
2. 学生对曲面方程的掌握程度。
3. 学生能够运用曲面方程进行曲面的绘制和分析。
教学资源:1. 教学PPT和动画演示。
2. 曲面方程的相关教材和参考书。
3. 计算机软件进行曲面的绘制和分析。
六、曲面的切平面和法线1. 切平面的定义与性质6.1 切平面的定义6.2 切平面的性质2. 法线的定义与性质6.3 法线的定义6.4 法线的性质3. 切平面和法线的求法6.5 切平面和法线的求法七、曲面的曲率1. 曲率的定义与性质7.1 曲率的定义7.2 曲率的性质2. 曲率的计算7.3 曲率的计算方法3. 曲面的弯曲程度分析7.4 曲面的弯曲程度分析八、曲面的绘制与分析实例1. 实例一:圆锥面的绘制与分析8.1 圆锥面的参数方程8.2 圆锥面的普通方程8.3 圆锥面的切平面和法线分析2. 实例二:椭圆面的绘制与分析8.4 椭圆面的参数方程8.5 椭圆面的普通方程8.6 椭圆面的切平面和法线分析3. 实例三:双曲面的绘制与分析8.7 双曲面的参数方程8.8 双曲面的普通方程8.9 双曲面的切平面和法线分析九、曲面在实际问题中的应用1. 曲面在工程中的应用9.1 曲面在机械设计中的应用9.2 曲面在建筑设计中的应用2. 曲面在自然科学中的应用9.3 曲面在光学中的应用9.4 曲面在声学中的应用十、复习与练习1. 复习本章内容10.1 复习曲面的概念与基本性质10.2 复习曲面的方程表示方法10.3 复习常见曲面的方程2. 课堂练习10.4 完成课堂练习题3. 课后作业10.5 布置课后作业教学方法:1. 采用案例教学法,通过具体实例讲解曲面的绘制与分析方法。
一、二次曲面
1-1球面
(X-X0)2+(Y-Y0)2+(Z-Z0)2=R2
球心为M0(X0,Y0,Z0)
1-2椭圆锥面
1-3椭球面
其中,表示xOz平面上的椭圆绕z轴旋转而成的椭球面。
1-4单叶双曲面
其中,表示xOz平面上的双曲线绕z轴旋转而成的单叶双曲面。
1-5双叶双曲面
其中,表示xOz平面上的双曲线绕x轴旋转而成的双叶双曲面。
1-6椭圆抛物面
1-7双曲抛物面(马鞍面)
二、柱面
2-1圆柱面
X2+Y2=R2
2-2椭圆柱面
2-3双曲柱面
2-4抛物柱面
y2=2px
注:形如二、柱面只含x,y而缺少z的方程F(x,y)=0在空间直角坐标系中表示母线平行于z 轴的柱面,其准线为xOy平面上的曲线C:F(x,y)=0
特别地,
1.球x2+y2+z2=R2
2.圆柱面x2+y2=R2
3.旋转抛物面X2+Y2=z(以原点为顶点,上下两个开口分别向上向下的抛物线旋转而成的图形)
4.X2+Y2=z2(以原点为顶点,上下两个开口分别向上向下的圆锥,锥顶角为90。
)。
高等数学作为数学的一门重要学科,涵盖了许多分支,其中包括曲线与曲面的研究。
在研究曲线与曲面时,我们经常使用参数方程来描述它们的性质和特点。
本文将介绍高等数学中曲线与曲面的参数方程的概念、特点和应用。
首先,我们来了解一下什么是参数方程。
在解析几何中,通常使用直角坐标系来描述点的位置。
一条曲线可以用其上任意一点的直角坐标表示,如y=f(x)。
而参数方程是一种描述曲线或曲面上的点的位置的方法,它使用参数变量来表示点的位置。
例如,对于一条曲线,我们可以使用参数t来表示曲线上的任意一点,这样我们就可以得到曲线的参数方程x=f(t),y=g(t)。
同样地,对于曲面,我们可以使用两个参数s和t来表示曲面上的任意一点,这样我们就可以得到曲面的参数方程x=f(s,t),y=g(s,t),z=h(s,t)。
其次,我们来看一下曲线与曲面的参数方程的特点。
首先,参数方程可以描述复杂的曲线和曲面。
由于参数方程使用参数变量来表示点的位置,可以通过改变参数的取值范围和步长,来描述曲线和曲面上的任意一点。
因此,参数方程可以用来描述具有复杂形状和特征的曲线和曲面,如椭圆、双曲线、螺旋线等。
其次,参数方程可以描述曲线和曲面上的运动和变化。
通过改变参数的取值范围和步长,我们可以观察到曲线和曲面上点的运动和变化过程,这对于研究物体的运动和变形具有重要意义。
最后,参数方程可以简化曲线和曲面的计算和求解问题。
由于参数方程使用参数变量来表示点的位置,我们可以通过代数方法对曲线和曲面进行计算和求解。
这对于解决许多数学问题和工程问题具有重要意义。
最后,我们来看一下曲线与曲面的参数方程的应用。
曲线与曲面的参数方程在许多数学领域和工程领域中都有广泛的应用。
例如,在微积分中,我们可以使用参数方程来描述曲线和曲面上的点的位置和变化,从而进行各种微积分运算,如求导、积分等。
在物理学中,参数方程可以描述物体的运动和变形,从而研究物体的运动轨迹和形状。
在工程领域中,参数方程可以用来描述复杂曲线和曲面的形状,如汽车造型设计、航空航天工程等。