则F(x,y,z)=0叫做曲面S的方程 曲面S叫做方程F(x,y,z)=0的图形. ➢两个基本问题 (1) 已知一曲面作为点的几何轨迹时,
求曲面方程. (2) 已知方程时,研究它所表示的几何形状
F(x, y, z) 0
z S
oy x
(必要时需作图).
例1 求动点到定点 M 0 (x0 , y0 , z0 ) z
z
➢概念
一条平面曲线绕其平面上
C
一条定直线旋转一周 所形成的曲面.
M (x, y, z)
M1 (0, y1, z1 )
旋转曲线
母线
o y
定直线
轴
x
➢旋转曲面的方程
f ( x2 y2 , z) 0
给定yoz面上曲线C: f ( y, z) 0
在曲线C上任取一点M1(0,y1,z1)
曲线C绕z轴旋转
z2 c2
1
( a,b,c为正数)
z
(1) 范围:
x
y
x a, y b, z c
(2) 在垂直坐标面的平面上的截痕:椭圆
x2 a2
y2 b2
z2 c2
1,
z t
x2 a2
y2 b2
z2 c2
1,
x t
x2 a2
y2 b2
z2 c2
1
y t
(3) 当 a=b 时为旋转椭球面; 当a=b=c 时为球面.
z
1. 椭圆锥
z
面
x2 a2
y2 b2
z2
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2 (bt ) 2
1,
zt
o yy xx