相似三角形的判定2
- 格式:ppt
- 大小:1.04 MB
- 文档页数:22
判定相似三角形的方法
判定相似三角形的方法有以下几种:
1. AA相似定理:如果两个三角形的两个角分别相等,则它们是相似的。
2. SSS相似定理:如果两个三角形的对应边的长度比例相等,则它们是相似的。
3. SAS相似定理:如果两个三角形的一个角相等,且它们的对应边的长度比例相等,则它们是相似的。
4. 对顶角相等定理:如果两个三角形的一个对顶角相等,则它们是相似的。
5. 直角三角形相似定理:如果两个直角三角形的一个锐角相等,则它们是相似的。
要注意的是,这些定理只是判定相似三角形的方法,而不能确定相似三角形的比例尺。
对于给定的两个相似三角形,我们可以通过这些定理来判断它们是否相似,但要确定它们的比例尺需要知道至少一个对应边的长度。
三角形的相似判定方法
有三种常用的三角形相似判定方法:
1. 角-角-角相似判定法(AAA相似判定法):
如果两个三角形的三个内角分别对应相等,则这两个三角形相似。
2. 边-边-边相似判定法(SSS相似判定法):
如果两个三角形的对应边的长度比例相等,则这两个三角形相似。
3. 边-角-边相似判定法(SAS相似判定法):
如果两个三角形的两边的长度比例相等,并且夹角相等,则这两个三角形相似。
需要注意的是,以上的相似判定方法只能确定两个三角形是否相似,不能确定它们的大小关系。
若要确定两个相似三角形之间的长宽比等具体数值关系,还需要另外给出一个边的长度或者角的大小。
初步掌握〃三组对应边的比相等的两个三角形相似〃的判定方法,以及〃两组对 应
边的比相等且它们的夹角相等的两个三角形相似〃的判定方法.
掌握两种判定方法,会运用两种判定方法判定两个三角形相似.
学科整合 课前自学探路
1. 复习提问:
两个三角形全等有哪些判定方法?
我们学习过哪些判定三角形相似的方法?
全等三角形与相似三角形有怎样的关系?
如图,如果要判定ABC 湘似,是不是一定需要 验证所有的对应角和对应
边的关系?
课题 相似三角形的判定(2)
课型新授 课时 难点
三角形相似的条件归纳、证明
教学目标
2. 探究:任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的2倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。
思考:通过上述操作我们发现,只要两个三角形的边具备什么条件时,这两个三角形就相似?
如右图,两个三角形的三组对应边的比相等,你能尝试证明这两个三角形相似吗?
【归纳】三角形相似的判定方法1如果两个三角形的三组对应边的比相等,那么这两个三角形相似.
3. 用上面同样的方法进一步探究三角形相似的条件:
(1)提出问题:由三角形全等的SAS判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?
(2)尝试画图,猜想并证明
(3)【归纳】三角形相似的判定方法2两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似
课上互学展示
例 1 :如图,在四边形ABCD 中,ZB=ZACD, AB=6, BC=4, AC=5, CD=7-,求
AD的长.
课终效果检测。
相似三角形的判定方法
1、两角分别对应相等的两个三角形相似;
2、两边成比例且夹角相等的两个三角形相似;
3、三边成比例的两个三角形相近;
4、一条直角边与斜边成比例的两个直角三角形相似;
5、用一个三角形的两边回去比另一个三角形与之相对应当的两边,分别对应成比例,如果三组对应边较之都相同,则三角形相近。
方法一:定理法,即平行于三角形一边的直线和其他俩边(或他的延长线)相交,所
截得的三角形与原三角形相似,俗话来讲就是一个大的三角形包含一个小的三角形,小的
三角形两边延长就成为了大三角形的两边;
方法二:俩角对应成正比的三角形相近,俗语来说先找出这两个三角形的对应边,间
接找到三角形三组对应角有俩组与成正比则相近;
方法三:两边对应成比例且夹角相等的三角形相似,俗话来讲:先找到各对应边对应角,一一对应后会很方便。
两边对应成比例:两组对应边之比相等,即按同一种比法相比。
夹
角相等:即所成比例的两边之间的那个角相等;
方法四:三边对应成比例,俗语来说:如上均先找出对应边对应角,将其一一对应。
三边对应成比例:就是三组对应边之比相等,比法均一致;
认定五:只适用于于直角三角形:直角边和斜边对应成比例则这俩个三角形相近,俗语
来说俗语来说:某种程度上直角三角形一个直角边和一个斜边对应成比例也同时代表着另
外一个直角边也对应成比例。
两角对应相等,两个三角形相似;两边对应成比例且夹角相等,两个三角形相似;三边对应成比例,两个三角形相似;三边对应平行,两个三角形相似;斜边与直角边对应成比例,两个直角三角形相似;全等三角形相似。
1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)
4.两三角形三边对应平行,则两三角形相似。
(简叙为:三边对应平行,两个三角形相似。
)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
(简叙为:斜边与直角边对应成比例,两个直角三角形相似。
)
6.如果两个三角形全等,那么这两个三角形相似。
(简叙为:全等三角形相似。
)。
三角形相似的判定方法
判断三角形是否相似的方法有以下几种:
1. AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。
2. SSS相似定理:如果两个三角形的对应边的比值相等,则这两个三角形相似。
3. SAS相似定理:如果两个三角形的一个角相等,且两个对应边的比值相等,则这两个三角形相似。
4. 直角三角形的判定:如果两个直角三角形的两条直角边分别相等,则这两个直角三角形相似。
5. 三角形边长之比的判定:如果一个三角形的边长与另一个三角形的边长之比相等,则这两个三角形相似。
需要注意的是,判断三角形是否相似时,只要满足相似定理中的一个条件即可。
三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。
二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。