系统频率特性
- 格式:ppt
- 大小:355.50 KB
- 文档页数:11
系统频率特性的测试1简介在电子电路中,系统频率特性是非常重要的性能参数之一。
系统频率特性指的是系统对输入信号频率的响应能力,通俗地说,就是系统对于不同频率的信号的处理能力。
在设计一些高精度和高性能的电路的时候,对系统频率特性的测试就显得非常重要。
在本文中,我们将介绍常见的系统频率特性测试方法,并针对其中的一种方法进行详细的介绍。
常见系统频率特性测试方法Bode图法Bode图法是一种基于频率响应的方法,用于描述系统对输入信号频率的响应能力。
它通常通过Bode图来表示被测系统的频率特性。
Bode图是以频率为横轴、输入输出响应幅值比或相位差为纵轴的图形。
具体来说,Bode图法首先将被测系统激励输入电路,然后通过测量输出信号幅值和相位与输入信号的相对大小和差距来构建图形。
频率响应测试法频率响应测试法是一种基于一个频率输入信号测量系统的输出响应的方法。
具体操作过程是,选取一个频率范围作为输入信号,然后将各个频率的输入信号作为输入,测量对应的输出信号以得到系统的频率响应。
这种方法会输出一个基于不同频率的幅值和相位差的表格,以及对应的曲线图。
载频测试法又称为亚细分测试法,通过选取不同的载频对被测系统进行激励,测量电路的响应电流进行测试。
在实际的应用中,亚细分测试法可以用来评估系统处理高频信号和噪音的能力。
系统频率特性测试方法之一:Bode图法测试过程Bode图法将被测系统激励输入电路,随后测量输出电路随频率变化的幅值和相位,将结果用Bode图进行展示。
具体的测试步骤如下:1.激励输入电路。
在实际测试中,往往选取的是一个正弦波作为输入信号,将其施加到被测系统中。
2.测量输出信号的幅值和相位。
使用输入信号激励电路后,使用测量设备测量输出信号随时间变化的幅值和相位。
3.用Bode图展示幅值和相位的变化。
将得到的幅值和相位数据绘制成Bode图,用以表示对应信号频率下的系统响应能力。
Bode图的意义Bode图在系统性能测试中起着非常重要的作用。
第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。
2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。
3. 分析测试结果,确定系统的主要频率成分和频率响应特性。
二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。
幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。
频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。
三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。
五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。
这些峰值和谷值可能对应系统中的谐振频率或截止频率。
通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。
2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。
相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。
通过分析相位特性,可以了解系统的相位稳定性。
六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。
2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。
3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。
第四章 频率特性分析4.1 什么是频率特性?解 对于线性定常系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性;将输出的相位于输入的相位之差定义为系统的相频特性。
将系统的幅频特性和相频特性统称为系统的频率特性。
4.2 什么叫机械系统的动柔度,动刚度和静刚度?解 若机械系统的输入为力,输出为位移(变形),则机械系统的频率特性就是机械系统的动柔度;机械系统的频率特性的倒数就是机械系统的动刚度;当0=w 时,系统频率特性的倒数为系统的静刚度。
4.3已知机械系统在输入力作用下变形的传递函数为 12+s (mm/kg),求系统的动刚度,动柔度和静刚度。
解 根据动刚度和动柔度的定义有 动柔度()()()12+====jw jw s s G jw G jw λ mm/kg 动刚度 )(jw K =)(1jw G =21+jw kg/mm 静刚度 ()()5.0021010==+====K w jw w jw G w jw kg/mm4.4若系统输入为不同频率w 的正弦函数Asinwt,其稳态输出相应为Bsin(wt+ϕ).求该系统的频率特性。
解:由频率特性的定义有 G (jw )=AB e jw。
4.5已知系统的单位阶跃响应为)(。
t x =1-1.8te 4-+0.8te9-,试求系统的幅辐频特性与相频特性。
解:先求系统的传递函数,由已知条件有)(。
t x =1-1.8te 4-+0.8te9-(t 0≥))(S X i =s 1)(。
S X =s 1-1.841+s +0.891+s )(S G =)()(。
S X S X =()()9436++s s )(jw G =jw s s G =)(=()()jw jw ++9436)(w A =)(jw G =22811636ww +•+)(w ϕ=0-arctan 4w -arctan 9w =-arctan 4w -arctan 9w4.6 由质量、弹簧、阻尼器组成的机械系统如图所示。
第四章系统的频率特性分析第四章系统的频率特性分析时间响应分析:主要用于分析线性系统的过渡过程,以时间t为独立变量,通过阶跃或脉冲输入作用下系统的瞬态时间响应来研究系统的性能;依据的数学模型为G(s)频率特性分析:以频率ω为独立变量,通过分析不同的谐波输入时系统的稳态响应来研究系统的性能;依据的数学模型为G(jω)频域分析的基本思想:把系统输入看成由许多不同频率的正弦信号组成,输出就是系统对不同频率信号响应的总和。
4.1频率特性概述1.频率响应与频率特性(1)频率响应:线性定常系统对谐波输入的稳态响应。
(frequencyresponse)对稳定的线性定常系统输入一谐波信号xi(t)=Xisin?t稳态输出(频率响应):xo(t)=Xo(?)sin[ωt+?(ω)]【例】设系统的传递函数为输入谐波信号xi(t)=Xisin?t 则稳态输出(频率响应)与输入信号的幅值成正比与输入同频率,相位不同进行laplace逆变换,整理得同频率?幅值比A(?)相位差?(?)ω的非线性函数(揭示了系统的频率响应特性)输入:xi(t)=Xisinωt稳态输出(频率响应):xo(t)=XiA(?)sin[ωt+?(ω)]幅频特性:稳态输出与输入谐波的幅值比相频特性:稳态输出与输入谐波的相位差?(?)[s]A(?)?(?)(2)频率特性:对系统频率响应特性的描述(frequencycharacteristic)频率特性定义为ω的复变函数,幅值为A(?),相位为?(?)。
输入谐波函数xi(t)=Xisin?t,其拉式变换为2.频率特性与传递函数的关系设系统的微分方程为:则系统的传递函数为:则由数学推导可得出系统的稳态响应为根据频率特性定义,幅频特性和相频特性分别为故G(j?)=?G(j?)?ej?G(j?)就是系统的频率特性如例1,系统的传递函数为所以3.频率特性的求法(1)频率响应→频率特性稳态输出(频率响应)故系统的频率特性为或表示为(2)传递函数→频率特性将传递函数G(s)中的s换成jω,得到频率特性G(jω)。
第三章 系统频率特性系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。
系统频域分析是工程广为应用的系统分析和综合的间接方法。
频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。
本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。
3.1 频率响应和频率特性3.1.1 一般概念频率响应是指系统对正弦输入的稳态响应。
考虑传递函数为G(s)的线性系统,若输入正弦信号t X t x i i ωsin )(= (3.1-1)根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。
输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。
输出的相位与i X 无关,只与输入信号产生一个相位差ϕ,且也是输入信号频率ω的函数。
即线性系统的稳态输出为)](sin[)()(00ωϕωω+=t X t x (3.1-2)由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。
输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ωϕ。
幅频特性:)()()(0ωωωi X X A = (3.1-3)相频特性:)()()(0ωϕωϕωϕi -= (3.1-4)频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为:)()()(0ωωωj X j X j G i = (3.1-5)频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。
任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。
)(ωj G 有三种表示方法:)()()(ωϕωωj e A j G = (3.1-6))()()(ωωωjV U j G += (3.1-7))(sin )()cos()()(ωϕωωωωjA A j G +=(3.1-8) 式中,实频特性:)(cos )()(ωϕωωA U =虚频特性:)()(arctan )()()()()(sin )()(22ωωωϕωωωωϕωωU V V U A A V =+==一般在分析系统的结构及参数变化对系统性能的影响时,频域分析比时域分析要容易些。