运筹学-排队论习题(B5打印)
- 格式:doc
- 大小:628.40 KB
- 文档页数:20
运筹学第三版胡运权郭耀煌黄⾊封⽪第九and⼗章排队论习题答案9.1 有A,B,C,D,E,F 6项⼯作,关系分别如图9-38(a),(b),试画出⽹络图。
9.2 试画出下列各题的⽹络图(见表9-8,表9-9,表9-10),并为事项编号。
9.3 设有如图9-39,图9-40⽹络图,⽤图上计算法计算时间参数,并求出关键路线。
9.4 绘制表9-11,表9-12所⽰的⽹络图,并⽤表上计算法计算⼯作的各项时间参数、确定关键路线。
9.5 某⼯程资料如表9-13所⽰。
要求:(1)画出⽹络图。
(2)求出每件⼯作⼯时的期望值和⽅差。
(3)求出⼯程完⼯期的期望值和⽅差。
(4)计算⼯程期望完⼯期提前3天的概率和推迟5天的概率。
解:每件⼯作的期望⼯时和⽅差见表9-13的左部。
⼯程完⼯期的期望值为32个⽉,⽅差为5(1+1+1+1+1)。
⼯程期望完⼯期提前3天的概率为0.09,推迟5天的概率为0.987。
9.6 对图9-41所⽰⽹络,各项⼯作旁边的3个数分别为⼯作的最乐观时间、最可能时间和最悲观时间,确定其关键路线和最早完⼯时间的概率。
根据关键线路,再考虑到其他线路上的时差很多,可知最早完⼯时间应该等于关键线路上各个⼯作最早完⼯时间之和:4+2+6+2+3=2=19 。
概率为0.005 。
9.7 某项⼯程各道⼯序时间及每天需要的⼈⼒资源如图9-42所⽰。
图中,箭线上的英⽂字母表⽰⼯序代号,括号内数值是该⼯序总时差,箭线下左边数为⼯序⼯时,括号内为该⼯序每天需要的⼈⼒数。
若⼈⼒资源限制每天只有15⼈,求此条件下⼯期最短的施⼯⽅案。
解:最短⼯期还是15天。
各个⼯作的开始时间如下图所⽰:9.8 已知下列⽹络图有关数据如表9-14,设间接费⽤为15元/天,求最低成本⽇程。
解:将①→②缩短两天,总⼯期为25天,直接费⽤7420元,间接费⽤375元,最⼩总费⽤为7795元。
⽹络图和关键线路如下:9.9 ⼀项⼩修计划包括的⼯作如表9-15所⽰。
第9章排队论判断下列说法是否正确:(1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布;(4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流;(5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统;(9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长;(10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
M/M/1、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求:(1)理发店空闲时间的概率;(2)店内有3个顾客的概率;(3)店内至少有1个顾客的概率;(4)在店内顾客平均数;(5)在店内平均逗留时间;(6)等待服务的顾客平均数;(7)平均等待服务时间;(8)必须在店内消耗15分钟以上的概率。
、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4人,修理时间服从负指数分布,平均需6分钟。
求:(1)修理店空闲时间的概率;(2)店内有3个顾客的概率;(3)店内顾客平均数;(4)店内等待顾客平均数;(5)顾客在店内平均逗留时间;(6)平均等待修理时间。
排队论例1题目:某火车站的售票处设有一个窗口,若购票者是以最简单流到达,平均每分钟到达1人,假定售票时间服从负指数分布,平均每分钟可服务2人,试研究售票窗口前排队情况解:由题设λ=1(人/分),μ=2(人/分),ρ=λμ=12平均队长L=1ρρ-=1(人)平均等待队长Lq=21ρρ-=12(人)平均等待时间Wq=λμμ(-1)=12(分)平均逗留时间W=1μλ-=1(分)顾客不需要等待的概率为P o=12,等待的顾客人数超过5人的概率为P(N≥6)=1766666111111()(1)()()()()222222n n nnn n n nPρ-∞∞∞∞=====-===∑∑∑∑1例2题目:在某工地卸货台装卸设备的设计方案中,有三个方案可供选择,分别记作甲、乙、丙。
目的是选取使总费用最小的方案,有关费用(损失)如下表所示设货车按最简单流到达,平均每天(按10小时计算)到达15车,每车平均装货500袋,卸货时间服从负指数分布,每辆车停留1小时的损失为10元。
解:平均到达率λ=1.5车/小时,服务率μ依赖于方案μ甲=1000/500/袋小时袋车=2车/小时μ乙=2000/500/袋小时袋车=4车/小时μ丙=6000/500/袋小时袋车=12车/小时由(7.2.6),1辆车在系统内平均停留时间为W甲=12-1.5=2(小时/车)W乙=14-1.5=0.4(小时/车)W丙=112-1.5=0.095(小时/车)每天货车在系统停留的平均损失费为W⨯10⨯15,每天的实际可变费用(如燃料费等)为(可变操作费/天)⨯设备忙的概率=c p(元/天)而ρ甲=0.75 , ρ乙=0.375 , ρ丙=0.125,所以每个方案的费用综合如下表所示:23例3 题目:要购置计算机,有两种方案.甲方案是购进一大型计算机,乙方案是购置n 台小型计算机.每台小型计算机是大型计算机处理能力的1n设要求上机的题目是参数为λ的最简单流,大型计算机与小型计算机计算题目的时间是负指数分布,大型计算机的参数是μ.试从平均逗留时间、等待时间看,应该选择哪一个方案 解:设ρ=λμ,按甲方案,购大型计算机 平均等待时间 q W 甲=ρμρ(1-)=λμμλ(-)平均逗留时间 W 甲=1μλ- 按乙方案,购n 台小型计算机,每台小计算机的题目到达率为n λ,服务率为nμ, ρ=//n n λμ=λμ平均等待时间 W q 乙=nρμρ(1-)=n ρμρ(1-)=nW q 甲平均逗留时间 W 乙=1n nμλ-=n μλ-=nW 甲所以只是从平均等待时间,平均逗留时间考虑,应该购置大型计算机4例4题目:设船到码头,在港口停留单位时间损失c 1 元,进港船只是最简单流,参数为λ,装卸时间服从参数为μ的负指数分布,服务费用为c μ2,c 2是一个正常数.求使整个系统总费用损失最小的服务率μ 解:因为平均队长L λμλ=-,所以船在港口停留的损失费为1c λμλ-,服务费为c μ1,因此总费用为 1c F c λμμλ=+-2 求μ使F 达到最小,先求F 的导数12()c dF c d λμμλ=-+-2 让dF d μ=0,解出2μλ=因为 22F u μμ*=∂∂=22()c λμλ*-1>0 (μ>λ) 最优服务率是μ*,当μμ*=时, 12()[c F c c λμλ*=+5例5题目:一个理发店只有一个理发师,有3个空椅供等待理发的人使用,设顾客以最简单流来到,平均每小时5人,理发师的理发时间服从负指数分布,平均每小时6人.试求L ,q L ,W ,q W解:λ=5(人/小时) , μ=5(人/小时) , k =4 , 56ρ= 用公式(7.2.10),(7.2.11),(7.2.12),(7.2.13)得到565555[16()5()]666 1.9715[1()]66L -+==- 5555(1)[16()]66 1.97 1.2251()6q L -=+=- 55555()[1()]660.101()6P -==- 5(1)z LLW P λλ==-=1.9750.9=0.438(小时)0.271qq zL W λ==(小时)6例6题目:给定一个//1/M M k 系统,具有λ=10(人/小时), μ=30(人/小时),k =2.管理者想改进服务机构.方案甲是增加等待空间,使k =3.方案乙是将平均服务率提高到μ=40(人/小时),设服务每个顾客的平均收益不变,问哪个方案获得更大收益,当λ增加到每小时30人,又将有什么结果?解:由于服务每个顾客的平均收益不变,因此服务机构单位时间的收益与单位时间内实际进入系统的平均人数k n 成正比(注意,不考虑成本)!(1)(1)1k k k k n p λρλρ+-=-=- 方案甲:k=3, λ=10, μ=3033411()310[]11()3n -=-=9.75 方案乙: k=2, λ=10, μ=40223110(1())311()4n -=-=9.5 因此扩大等待空间收益更大 当λ增加到30人/小时时,λρμ==1.这时方案甲有3330()31n =+=22.5(人/小时) 而方案乙是把μ提高到μ=40人/小时. λρμ==3040<1, k=2 2233(1())430[]31()4n -=-=22.7(人/小时) 所以当λ=30人/小时时,提高服务效益的收益比扩大等待空间的收益大7例7题目:一个大型露天矿山,考虑建设矿山卸矿场,是建一个好呢?还是建两个好.估计矿车按最简单流到达,平均每小时到达15辆,卸车时间也服从负指数分布,平均卸车时间是3分钟,每辆卡车售价8万元,建设第二个卸矿场需要投资14万元解:平均到达率 λ=15(辆/小时) 平均服务率 μ=20(辆/小时) 只建一个卸矿场的情况:1ρρ==1520=0.75 在卸矿场停留的平均矿车数0,,,,,,q q q q p p L L W W λμL λμλ=-=152015-=3(辆)建两个卸矿场的情况:ρ=0.75,2μ=2λμ=0.375 2101220[10.75(0.75)]0.452!22015P -=++=- 220.451520(0.75)0.750.120.750.871!(22015)L +=+=+=-因此建两个卸矿场可减少在卸矿场停留的矿车数为:3-0.87=2.13辆.就是相当于平均增加2.13辆矿车运矿石.而每辆卡车的价格为8万元,所以相当于增加2.13⨯8=17.04万元的设备,建第二个卸矿场的投资为14万元,所以建两个卸矿场是合适的.8例8题目:有一个///M M c ∞系统,假定每个顾客在系统停留单位时间的损失费用为c 1元,每个服务设备单位时间的单位服务率成本为c 2元.要求建立几个服务台才能使系统单位时间平均总损失费用最小解:单位时间平均损失费为F c L c c μ=+12要求使F 达到最小的正整数解c *,通常用边际分析法:找正整数c *,使其满足{()(1)()(1)F c F c F c F c ****≤+≤-由()(1)F c F c **≤+,得到122()(1)(1)c L c c c c L c c c μμ****+≤+++所以 21()(1)c L c L c c μ**-+≤ 同样,由()(1)F c F c **≤-得到21(1)()c L c L c c μ**--≥因此c *必须满足不等式21()(1)c L c L c c μ**-+≤≤(1)()L c L c **-- 取c =1,2,…,计算()L c 与(1)L c +之差,若21c c μ落在()(1)L c L c **-+,(1)()L c L c **--之间,c *就是最优解9例9题目:某公司中心实验室为各工厂服务,设做实验的人数按最简单流到来.平均每天48(人次/天),1c =6(元).作实验时间服从负指数分布,平均服务率为μ=25(人次/天),2c =4(元),求最优实验设备c *,使系统总费用为最小. 解:λ= 48(人次/天),μ=25(人次/天),λμ=1.92 按///M M c ∞计算0P ,()L c 等(注意以下公式只对0 1.92cρ=<1成立). 201100(1.92)(1.92)[]!(1)!( 1.92)n P n c c ρ--==+--∑12(1.92)() 1.92(1)!( 1.92)c L c P c c +=+-- 将计算结果列成下表21c c μ=1006=16.67 所以取c *=3,总费用最小10例10题目:设有2个工人看管5台自动机,组成//2/5/5M M 系统,λ=1(次/运转小时),μ=4(次/小时),求平均停止运转机器数L 、平均等待修理数q L 以及每次出故障的平均停止运转时间W 、平均等待修理时间q W解:14λμ=,18c λμ=由(7.3.1),(7.3.2)有 0P =0.3149 1P =0.391 2P =0.197 由(7.3.3),(7.3.4)有 q L =0.118,L =1.094,c λ=3.906 由(7.3.5),(7.3.6)有W =0.28(小时),q W =0.03(小时)实际上,这些数量指标有表可查例11题目:设某厂有自动车床若干台,各台的质量是相同的,连续运转时间服从负指数分布,参数为λ,工人的技术也差不多,排除故障的时间服从负指数分布,参数为μ.设λμ=0.1,有两个方案.方案一:3个工人独立地各自看管6台机器.方案二,3个工人共同看管20台机器,试比较两个方案的优劣解:方案一.因为是分别看管,可以各自独立分析,是3个//1/6M M 系统.由上面的公式可求出01P -=0.5155,c =0.5155, a =5.155Lq =0.3295, L =0.845,(1)q =0.4845,(1)r =0.0549方案二.m =20,c =3,λμ=0.1,可求得c =1.787,a =17.87,q L =0.339 L =2.126,(3)q =0.4042,(3)r =0.01695机器损失系数,修理工人损失系数都小于方案一,所以方案二较好11例12题目:某露天铁矿山,按设计配备12辆卡车参加运输作业(每辆载重160吨,售价72万元),备用车8辆,要求保证同时有12辆车参加运输的概率不低于0.995.设每辆平均连续运输时间为3个月,服从负指数分布.有两个修理队负责修理工作,修理时间服从负指数分布.平均修复时间为5天.问这个设计是否合理.解:由假设知,这是////M M c m N m +系统,m =12,1λ=3,1μ=6(月)c =2我们有m c λμ=0.3333,c μλ=36用c N ≤的公式,求N ,要求00.995Nn n p =≥∑设N =2,有Nnn p=∑=0.9474,当N =3时,有Nnn p=∑=0.9968.所以3辆备用车就能达到要求,原设计用的备用车太多当N =3时,卡车的利用律(2)q =0.793712例13题目:假定例2.1中工人的到达服从泊松分布,λ=8人/小时,试分别计算1h 内到达4,5,6,…,12个工人的概率。
328习题十三13.1 某市消费者协会一年365天接受顾客对产品质量的申诉。
设申诉以λ=4件/天的普阿松流到达,该协会每天可以处理申诉5件,当天处理不完的将移交专门小组处理,不影响每天业务。
试求:(1)一年内有多少天无一件申诉;(2)一年内多少天处理不完当天的申诉。
13.2 来到某餐厅的顾客流服从普阿松分布,平均每小时20人。
餐厅于上午11:00开始营业,试求:(1)当上午11:07有18名顾客在餐厅时,于11:12恰好有20名顾客的概率(假定该时间段内无顾客离去);(2)前一名顾客于11:25到达,下一名顾客在11:28至11:30之间到达的概率。
13.3 某银行有三个出纳员,顾客以平均速度为4人/分钟的泊松流到达,所有的顾客排成一队,服务时间服从均值为0.5分钟的负指数分布,试求:(1) 银行内空闲时间的概率;(2) 银行内顾客数为n 时的稳态概率;(3) 平均队列长Lq ;(4) 银行内的顾客平均数Ls ;(5) 平均逗留时间Ws ;(6) 平均等待时间Wq 。
13.4 某加油站有一台油泵。
来加油的汽车按普阿松分布到达,平均每小时20辆,但当加油站中已有n 辆汽车时,新来汽车中将有一部分不愿等待而离去,离去概率为4n (n =0,1,2,3,4)。
油泵给一辆汽车加油所需时间为具有均值3分钟的负指数分布。
(1)画出此排队系统的速率图;(2)导出其平衡方程式;(3)求出加油站中汽车数的稳态概率分布;(4)求那些在加油站的汽车的平均逗留时间。
13.5 某无线电修理商店保证每件送到的电器在一小时内修完取货,如超过一小时则分文不取。
已知该商店每修理一件平均收费10元,其成本平均每件5.50元。
已知送来修理的电器按普阿松分布到达,平均每小时6件,每维修一件的时间平均为7.5分钟,服从负指数分布。
试问:(1)该商店在此条件下能否盈利;(2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。
13.6 某企业有5台车运货,已知每台车每运行100小时平均需维修2次,每次需时20分钟,以上分别服从普阿松及负指数分布。
《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
首页 | 课程介绍 | 教学大纲| 授课教案| 测试习题| 教学视频| 实践教学| 考研指导| 参考资料| 前沿追踪| 教学队伍| 交流空测试习题课后习题第一章线性规划第三章图与网络分析第五章存储论第七章对策论综合测试运筹学(96学时)运筹学(48学时)在线测试以上分别服从泊松分布和负指数分布。
为减轻打字员负担,有两个方案;一是增加一名打字员,每天费为 40 元,其工作效率同原打字员;二为购一台自动打字机,以提高打字效率,已知有三种类型打字机其费用及提高打字的效率如表 6-1 所示。
表 6-1型号每天费用 / 元打字员效率提高程度 /%1 37 502 39 753 43 150据公司估测,每个文件若晚发出 1h 将平均损失 0.80 元。
设打字员每天工作 8h ,试确定该公司应采用的方案。
6.8 某商店收款台有 3 名收款员,顾客到达率为每小时 504 人,每名收款员服务率为每小时 240 人,设顾客到达为泊松流,收款服务时间服从负指数分布,分别求 P 0 、 L q 、 L s 、 W q 及 W s 。
6.9 某设备维修中心有 k 名工人,每天到达的需检修的设备服从λ=10 的负指数分布,每名工人维修设备的平均时间服从μ=3 的负指数分布。
现已知设置一名工人的服务成本为每天 4 元,而设备等待损失为每天 25 元,试决定此设备维修中心工人的最佳数字 k 。
6.10 考虑某个只有一个服务员的排队系统,输入为参数λ的普阿松流。
假定服务时间的概率分布未知,但期望值已知为 1/ μ。
(a) 比较每个顾客在队伍中的期望等待时间,如服务时间的分布为:①负指数分布;②定长分布;③爱郎分布,` 值为负指数分布的 1/2 ;(b) 如与值均增大为原来的 2 倍,值也相应变化,求上述三种情况下顾客在队伍中期望等待间的改变情况。
6.11 汽车按泊松分布到达一个汽车服务部门,平均 5 辆 /h 。
洗车部门只拥有一套洗车设备,试分别计算在下列服务时间分布的情况下系统的 L s , L q , W s 与 W q 的值:(a) 洗车时间为常数,每辆需 10min ;(b) 负指数分布, 1/u=10min;(c) t 为 5~15min 的均匀分布;(d) 正态分布,μ=9min,Var(t)=42 ;(e) 离散的概率分布 P ( t=5 ) =1/4 , P(t=10)=1/2, P(t=15)=1/4 。
《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
运筹学100排队论第10章排队论第⼀节排队服务系统的基本概念⼀、排队系统的特性排队问题的实例:超市付款,⾃动取款机取款,医院门诊,乘公交车,设备修理。
排队服务系统的要素:顾客源,等待队列,服务机构。
要素的特性:1. 顾客源顾客到达的间隔时间:确定、随机(分布类型);⼀次到达⼈数:单个到达,成批到达;顾客源:数量⽆限,数量有限。
2. 等待队列等待规则:损失制,等待制,混合制;接受服务顺序:先到先服务,后到先服务,按优先权服务,随机服务。
3. 服务机构服务台数量:单个,多个;排列⽅式:串联、并联、混合排列。
服务时间:固定,随机(分布类型);⼀次服务⼈数:单⼈,成批。
三、排队服务系统的分类按上⾯所讨论的排队系统各项的特性,可对排队系统作出分类。
通常按如下6⽅⾯的特性对排队系统进⾏分类: (a /b /c ) : (d /e /f )每个字母代表⼀个特征,它们分别是:a :顾客到达间隔的分布,有:M ──负指数分布;D ──确定型;E k ──k 阶爱尔郎分布;GI ──⼀般相互独⽴的分布。
b :服务时间的分布有:M 、D 、E k 、Gc :系统中并联的服务台数,记为Sd :系统中最多可容纳的顾客数,∞~1e :顾客源总数,为∞~1f :排队服务规则FCFS ──先到先服务LCFS ──后到先服务⽤这6个参数我们可以表⽰出某种类型的排队系统,如:M /M /1/10/∞/FCFS其中后三项可以省略,这时表⽰的是:a /b /c /∞/∞/FCFS三、排队系统的状态及参数系统状态N (t )——排队系统中的顾客数,包括等待的和正在被服务的。
其与系统运⾏的时刻t 相关,且是⼀个随机变量。
稳定状态——当系统状态与时刻t ⽆关时,称系统处于稳定状态。
在系统开始运⾏的⼀段时间内,系统状态随时间⽽变化,在运⾏⼀段时间之后,系统的状态将不随时间变化,此时系统即进⼊稳定状态。
排队论主要研究系统处于稳定状态的⼯作情况,以下参数也都针对于稳定状态进⾏定义。
练习题(博弈论部分):1、化简下面的矩阵对策问题:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2504363432423622415332412A2、列出下列矩阵对策的线性规划表达式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=334133313A3、用线性方程组解 “齐王赛马”的纳什均衡。
解:已知齐王的赢得矩阵为A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------3111111311111131111113111111311111134、已知对策400008060A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的最优解为:)133,134,136(),134,133,136(**==Y X ,对策值1324*=V ,求以下矩阵对策的最优解和对策值⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=203820442020202032'A5、设矩阵对策的支付矩阵为:353432323A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求其策略和策略的值。
6、求解下列矩阵对策的解:123312231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦练习题(多属性决策部分):2、拟选择一款洗衣机,其性能参数(在洗5Kg衣物的消耗)如下表,设各目标的重要性相同,采用折中W=3、六方案四目标决策问题的决策矩阵如下表,各目标的属性值越大越好,{0.3,0.2,0.4,0.1}T请用ELECTRE法求解,折中法,加权法求解排队论练习:例1:在某单人理发馆,顾客到达为普阿松流,平均到达间隔为20分钟,理发时间服从负指数分布,平均时间为15分钟。
求:(1)顾客来理发不必等待的概率;(2)理发馆内顾客平均数;(3)顾客在理发馆内平均逗留时间;(4)如果顾客在店内平均逗留时间超过1.25小时,则店主将考虑增加设备及人员。
问平均到达率提高多少时店主才能做这样考虑呢?例2:某机关接待室只有一位对外接待人员,每天工作10小时,来访人员和接待时间都是随机的。
若来访人员按普阿松流到达,其到达速率λ=7人/小时,接待时间服从负指数分布,其服务速率μ=7.5人/小时。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==运筹学第三版课后习题答案篇一:运筹学第3版熊伟编著习题答案运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章多属性决策品P343 第13章博弈论P371 全书420页第1章线性规划1.1 工厂每月生产A、B、C三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为maxZ?10x1?14x2?12x3?1.5x1?1.2x2?4x3?2500?3x?1.6x?1.2x?140023?1? ?150?x1?250??260?x2?310?120?x3?130???x1,x2,x3?01.2 建筑公司需要用5m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:问怎样下料使得(1)用料最少;(2)余料最少.【解设xj(j=1,2,…,10)为第j种方案使用原材料的根数,则(1)用料最少数学模型为minZ??xjj?110?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200 ??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,10(2)余料最少数学模型为minZ?0.5x2?0.5x3?x4?x5?x6?x8?0.5x10?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,101.3某企业需要制定1~6月份产品A的生产与销售计划。
1. 高速公路入口收费处设有一个收费通道,汽车到达服从Poisson 分布,平均到达速率为100辆/小时,收费时间服从负指数分布,平均收费时间为15秒/辆。
求1、收费处空闲的概率;2、收费处忙的概率;3、系统中分别有1,2,3辆车的概率。
根据题意, λ=100辆/小时,μ1=15秒=2401(小时/辆),即μ=240(辆/小时)。
因此: 125240100==μλ=ρ 系统空闲的概率为:583.012712511P 0==-=ρ-= 系统忙的概率为:417.0125)1(1P 10==ρ=ρ--=-系统中有1辆车的概率为:243.014435127125)1(P 1==⨯=ρ-ρ=系统中有2辆车的概率为:101.01728175127125)1(P 222==⨯⎪⎭⎫⎝⎛=ρ-ρ=系统中有3辆车的概率为:0422.020736875127125)1(P 333==⨯⎪⎭⎫⎝⎛=ρ-ρ=2.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
解:单位时间为小时,5.063,6,3=====μλρμλ (1)店内空闲的时间: 5.021110=-=-=ρp ;(2)有4个顾客的概率:03125.02121121)1(5444==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-=ρρρ;(3)至少有一个顾客的概率:{}5.0110=-=≥p N P ;(4)店内顾客的平均数:11=-=ρρL ;(5)等待服务的顾客的平均数:5.0=-=ρL L q(6)平均等待修理的时间:1667.035.0===λqL W; (7)一个顾客在店内逗留时间超过15分钟的概率。
{}607.01521)201101(15)(====>-----eeeT P tλμ3. 设有一个医院门诊,只有一个值班医生。
病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数;(3)病人在门诊部的平均逗留时间;(4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。
问病人平均到达率为多少时,医院才会增加医生?解: 单位时间为小时,6.0,51260,3=====μλρμλ(1)病人到来不用等待的概率:4.06.0110=-=-=ρp (2)门诊部内顾客的平均数:5.16.016.01=-=-=ρρL (人) (3)病人在门诊部的平均逗留时间;5.01=-=λμW (小时) (4)若病人在门诊部内的平均逗留时间超过1小时,则有: 4,5111=∴-=-=λλλμ即当病人平均到达时间间隔小于等于15分钟时,医院将增加值班医生。
4. 某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:(1)系统内没有顾客的概率; (2)系统内顾客的平均数; (3)排队等待服务的顾客数;(4)顾客在系统中的平均花费时间; (5)顾客平均排队时间。
解:单位时间为小时,3,4.0,10,4=====K μλρμλ;(1)系统内没有顾客的概率:616.04.014.0111440=--=--=ρρp ;(2)系统内顾客的平均数:562.04.014.044.014.01)1(14411=-⨯--=-+--=++K K K L ρρρρ(人); (3)排队等待服务的顾客数:178.0384.0562.0)1(0=-=--=p L L q (人);(4)顾客在系统中的平均花费时间: 8.8146.0842.3562.0)1(03===-=p LW ρλ(分钟) (5)顾客平均排队时间:8.2046.01.0146.01==-=-=μW W q(分钟)。
5. 某街区医院门诊部只有一个医生值班,此门诊部备有6张椅子供患者等候应诊。
当椅子坐满时,后来的患者就自动离去,不在进来。
已知每小时有4名患者按Poisson 分布到达,每名患者的诊断时间服从负指数分布,平均12分钟,求: (1)患者无须等待的概率; (2)门诊部内患者平均数; (3)需要等待的患者平均数; (4)有效到达率;(5)患者在门诊部逗留时间的平均值; (6)患者等待就诊的平均时间; (7)有多少患者因坐满而自动离去?解:此问题可归结为M/M/1/7的模型,单位时间为小时, 7,8.0,5,4=====K μλρμλ(1)患者无须等待的概率:2403.08.018.018=--=p ;(2)门诊部内患者平均数:387.28.018.088.018.088=-⨯--=L (人)(3)需要等待的患者平均数:627.1)1(387.20=--=p L q (人)(4)有效到达率:8.3)8.08.018.011(4)1(787=⨯---⨯=-=P λλε;(5)患者在门诊部逗留时间的平均值:628.08.3387.2===ελLW (小时)=37.7(分钟)(6)患者等待就诊的平均时间:7.25127.37=-=q W (分钟)(7)有%03.50503.011787==--=ρρρP 的患者因坐满而自动离去.6. 某加油站有四台加油机,来加油的汽车按Poisson 分布到达,平均每小时到达20辆。
四台加油机的加油时间服从负指数分布,每台加油机平均每小时可给10辆汽车加油。
求:(1)前来加油的汽车平均等待的时间;(2)汽车来加油时,4台油泵都在工作,这时汽车平均等待的时间.解:此为一个M/M/4系统,,2,10,20====μλρμλ系统服务强度5.042==*ρ,所以 13.02111!42!21300=⎪⎪⎭⎫ ⎝⎛-+=-=∑k k k k p(1)前来加油的汽车平均等待的时间即为q W : 因为 1012011-=-=-=L LW W q μλμ而 17.22)5.01(!413.05.02)1(!2420=+-⨯⨯⨯=+-=**ρρρρc p L c 故:q W =0.0085(小时)=0.51(分钟)(2)汽车来加油时,4台油泵都在工作,设汽车平均等待的时间为*W . 则 ∑∞=*=c k kqP W W ,因为 26.001==p p ρ,26.02022==p p ρ18.0!3033==p p ρ,4=c ,17.01304=-=∑∑=∞=k k k kp p 所以 :317.051.017.0===*q W W (分钟)。
7. 某售票处有3个售票口,顾客的到达服从Poisson 分布,平均每分钟到达9.0=λ(人),3个窗口售票的时间都服从负指数分布,平均每分钟卖给4.0=μ(人),设可以归纳为M/M/3 模型,试求: (1)整个售票处空闲的概率; (2)平均对长; (3)平均逗留时间; (4)平均等待时间;(5)顾客到达后的等待概率。
解:此为一个M/M/3系统,,25.2,4.0,9.0====μλρμλ系统服务强度:75.03==*ρρ(1)0743.075.011!3)25.2(!)25.2(13030=⎪⎪⎭⎫ ⎝⎛-⨯+=-=∑k k k p(2)因为:95.325.20743.0)75.01(!375.0)25.2(23=+⨯-⨯⨯=L (人)所以:70.125.295.3=-=-=ρL L q (人)(3)平均逗留时间:39.49.095.3===λL W (分钟)(4)平均等待时间:89.14.0139.41=-=-=μW W q (分钟) (5)设顾客到达后的等待概率为*P ,则57.00743.075.011!3)25.2(11!30=⨯-⨯=-==*∞=*∑P c P P cck k ρρ8. 一个美容院有3张服务台,顾客平均到达率为每小时5人,美容时间平均30分钟,求:(1)美容院中没有顾客的概率; (2)只有一个服务台被占用的概率。
解:此为系统为M / M / n (n=3)损失制无限源服务模型,5.2,2060,,5=====μλρμλ,(1)()108.0604.2125.35.21!)5.2(11300=+++=⎪⎪⎭⎫ ⎝⎛=--=∑k k k p(2)27.0108.05.201=⨯==p p ρ9. 某系统有3名服务员,每小时平均到达240名顾客,且到达服从Poisson 分布,服务时间服从负指数分布,平均需0.5分钟,求: (1)整个系统内空闲的概率; (2) 顾客等待服务的概率;(3)系统内等待服务的平均顾客数; (4)平均等待服务时间; (5)系统平均利用率;(6)若每小时顾客到达的顾客增至480名,服务员增至6名,分别计算上面的 (1)——(5)的值。
解:此为系统为M / M / n (n=3)服务模型,3,2,)/(25.01,/(460240=======n μλρμλ分钟人分钟)人, (1)整个系统内空闲的概率:111.0)4221(!3!112030=+++=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=--=∑k k n n k p ρρρ;(2)顾客等待服务的概率:{}444.094!3003==⎪⎪⎭⎫ ⎝⎛-=>p n n W p ρρ; (3)系统内等待服务的平均顾客数: 888.098)(!)1(021==--=+p n n L n qρρ(人); (4)平均等待服务时间: 222.0924198==⨯==λqqL W;(5)系统平均利用率;667.02===*n ρρ;(6)若每小时顾客到达的顾客增至480名,服务员增至6名,分别计算上面的(1)——(5)的值。
6,4,)/(25.01,/(860480=======n μλρμλ分钟人分钟)人 则:整个系统内空闲的概率:017.0)067.17866.42(!!11200=+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=--=∑k n k n n n k p ρρρ顾客等待服务的概率:{}285.0017.0067.17!00=⨯=⎪⎪⎭⎫ ⎝⎛-=>p n n n W p nρρ 系统内等待服务的平均顾客数:58.0)(!)1(021=--=+p n n L n q ρρ(人)平均等待服务时间:07.0==λq qL W 系统平均利用率;667.064===*n ρρ。
10. 某服务系统有两个服务员,顾客到达服从Poisson 分布,平均每小时到达两个。