胡运权排队论习题解
- 格式:doc
- 大小:556.50 KB
- 文档页数:14
11.1 某建筑工地每月需用水泥800t ,每t 定价2000元,不可缺货。
设每t 每月保管费率为0.2%,每次订购费为300元,求最佳订购批量。
解:每月需求量R=800t/月,每次订购费3003=C 元,货物单价k=2000元/t ,每t 每月的保管费%2.020001⨯=C =4元 则最佳定购量4.34648003002213*=⨯⨯==C R C Q11.2一汽车公司每年使用某种零件150000件,每件每年保管费0.2元,不允许缺货,试比较每次订购费为1000元或100元两种情况下的经济订货批量解: 类型 不允许缺货,补充时间极短根据题意知 R=150000件 1c =0.2 3c =1000或100(1) 当每次订购费为1000元时候的经济订货批量*t =R c c 132=150000*2.01000*2=151=3.65 Q *=R *t =150000*151=38729.83 (2) 当每次订购费为100元时候的经济订货批量*t =R c c 132=150000*2.0100*2=0.0816 Q *=R *t =150000*0.0816=12247.811.12某冬季商品每件进价25元,售价45元。
订购费每次20元,单位缺货费45元,单位存储费5元,期初无存货。
该商品的需求量r 的概率分布见表11-4。
解:25=K 1C =5 2C =45 203=C4.0)100(4.050205452545212====+-=+-r P C C K C该商品在冬季来临前应订购100件。
11.13某厂生产需要某种部件。
该部件外购价值有850元,订购费每次2825元。
若自产,每若选择外购策略时,若发生购物数少于实际需求量的情况,差额部分工厂将自产。
假定期初存货为零。
求工厂的订购策略。
2c =1250,1c =2825,k=850,1c =45N= (2c -k) / (2c + 1c )= (1250-850)/(1250+45)=400/1295=0.30订购90件。
第一章P43-1.1(1)当取A (6/5,1/5)或B (3/2,0)时,z 取最小值3。
所以该问题有无穷多最优解,所有线段AB 上的点都是最优解。
P43-1.2(1)令''4'44x x x -=,z z -='''4'4321'55243max x x x x x z +-+-=,,,,,,232142222465''4'43216''4'43215''4'4321''4'4321≥=-+-++-=+-+-+=-+-+-x x x x x x x x x x x x x x x x x x x x x x x xP43-1.4(1) 图解法:A(0,9/4),Z 1=45/4;B(1,3/2),Z 2=35/2;C(8/5,0),Z 3=16。
单纯形法:10 5 0 0C b X b b x1x2x3x4θ0 x39 3 4 1 0 30 x48 5 2 0 1 8/5δ10 5 0 00 x321/5 0 14/5 1 -3/5 3/210 x18/5 1 2/5 0 1/5 4δ0 1 0 -25 x23/2 0 1 5/14 -3/1410 x1 1 1 0 -1/7 2/7δ0 0 -5/14 -25/14依次相当于:原点;C;B。
P44-1.7(1)2 -1 2 0 0 0 -M -M -MC b X b b x1x2x3x4x5x6x7x8x9θ无界解。
两阶段法:阶段二:P45-1.10证明:CX (0)>=CX*,C*X*>=C*X (0) CX (0)-CX*+C*X*-C*X (0)>=0,即(C*-C)(X*-X (0))>=0。
P45-1.13设饲料i 使用x i (kg ),则543218.03.04.07.02.0m in x x x x x z ++++=s.t. 7001862354321≥++++x x x x x 305.022.05.054321≥++++x x x x x1008.022.05.054321≥++++x x x x x0,,,,54321≥x x x x x第二章P74-2.1(1)321532m ax y y y w ++=22321≤++y y y 243321≤++y y y 4334321=++y y y 无约束321,0,0y y y ≤≥P75-2.4(1),06353322232max 212121212121≥≥≤-≤+≤-≤++=y y y y y y y y y y y y w(2) (8/5,1/5)(3) 无穷多最优解。
胡运权运筹学第五版答案【篇一:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)412该问题有无穷多最优解,即满足4x1z?3。
6x26且0?x2?的所有?x1,x2?,此时目标函数值(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.2(a) 约束方程组的系数矩阵12a833106?403000200??0?1t最优解x??0,10,0,7,0,0?。
(b) 约束方程组的系数矩阵1a222314??2??最优解1.3(a)(1) 图解法11??2x??,0,,0?5?5?t。
最优解即为?3x14x295x12x28的解x31,2,最大值z352(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?10x1?5x2?0x3?0x4?3x1?4x2?x3?9s.t. ?5x12x2x48则p3,p4组成一个基。
令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表12。
??min?898,53?520,??min?2183,??142?2?新的单纯形表为1,20,表明已找到问题最优解x1?1, x2?32,x3?0 , x4?0。
最大值z*352(b) (1) 图解法6x1?2x2x1?x2?最优解即为?6x12x224x1?x2?5的解x73,22?,最大值z172(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?2x1?x2?0x3?0x4?0x55x2?x3?15??s.t. ?6x1?2x2?x4?24xxx5125则p3,p4,p5组成一个基。
令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表12。
??min??,245?,??461?155,24,20,??min?3?32?2新的单纯形表为【篇二:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。
习题解答(6)1. 证明:序列7、6、5、4、3、2不可能是某个简单图的次的序列。
证明:由定理1有 q v d v v 2)(=∑∈,而在此序列中,∑∈vv v d )(27=为奇数,所以此序列不可能是某个简单图的次的序列。
2. 已知九个人921,,v v v 中1v 和两个人握过手,32,v v 各和四个人握过手,7654,,,v v v v 各 和五个人握过手,98,v v 各和六个人握过手,证明从这九个人中一定可以找出三个人互相握过手。
证明:该问题可以表述为一个9点(代表9个人)的简单图问题,不存在重复边和环,则由题意知,5)()()()(,4)()(,2)(7654321=======v d v d v d v d v d v d v d , .6)()(98==v d v d 其中],[j i v v 表示i v 和j v 握过手。
对9v 而言,因,6)(9=v d 所以7654,,,v v v v 中至少有两点存在与9v 的连线。
设该两点为4v 和5v ,假设4v 和9v 相联的其它5点之间无边,则,358)(4=-≤v d 这与已知 5)(4=v d 相矛盾。
故假设不成立,即4v 与上述5点间必存在至少两条边,设其中一点为k v ,则k v , 94,v v 两两相连,即存在三人互相握过手。
3.已知下图表示7个城市间抑修建一条连接各个城市的通信线路,各边的权数表示两个城市之间线路的修建费。
利用“丢边破圈法”,求连接个城市通信线路最小修建费用方案。
F 50 EB 23 C解:在上图中依次去掉GD (6),GC (52),EF (50),AF (48),BG (46)AG (45)各边后,即求得最小生成树T,如下图所示,T中各边权数之和为219。
F E39 42 40A G D37 3823B C。
第一章习题解答1.1 用图解法求解下列线性规划问题。
并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。
+=32min 21x x Z +=23max 21x x Z ⎪⎩⎪⎨⎧≥≥+≥+0,422664.)1(212121x x x x x x st ⎪⎩⎪⎨⎧≥≥+≤+0,124322.)2(212121x x x x x x st ⎪⎩⎪⎨⎧≤≤≤≤≤++=85105120106.max )3(212121x x x x st x x Z ⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答无穷多最优解,,422664.32min )1(21212121⎪⎩⎪⎨⎧≥≥+≥++=x x x x x x st x x Z 是一个最优解3,31,121===Z x x 该问题无解⎪⎩⎪⎨⎧≥≥+≤++=0,124322.23max )2(21212121x x x x x x st x x Z 第一章习题解答85105120106.max )3(212121⎪⎩⎪⎨⎧≤≤≤≤≤++=x x x x st x x Z 唯最优解16,6,1021===Z x x 唯一最优解,该问题有无界解⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答1.2 将下述线性规划问题化成标准形式。
1422245243min )1(432143214321⎪⎪⎧≤+−+−=−+−+−+−=x x x x x x x x x x x x Z .,0,,23243214321⎪⎪⎩⎨≥≥−++−无约束x x x x x x x x st ⎪⎩⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min )2(x x x x x x x x x st x x x Z 第一章习题解答.2321422245243min )1(4321432143214321⎪⎪⎪⎨⎧≥−++−≤+−+−=−+−+−+−=x x x x x x x x x x x x st x x x x Z ,0,,4321⎪⎩≥无约束x x x x ⎪⎪⎩⎪⎪⎨⎧≥=−+−++−=+−+−+=−+−+−+−+−=0,,,,,232142222455243max 64241321642413215424132142413214241321x x x x x x x x x x x x x x x x x x x x x x x st x x x x x Z 第一章习题解答⎪⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min)2(x x x x x x x x x st x x x Z ⎩⎪⎩⎪⎨⎧≥=++−+=−++−+−+=0,,,,6243322max 43231214323121323121323121x x x x x x x x x x x x x x st x x x x Z第一章习题解答634334max )3(3212121⎪⎪⎧=−+=++=x x x x x st x x Z 517,0,1,59,524,,1,0424321421=====⎪⎪⎩⎨=≥=++Z x x x x j x x x x j 该题是唯一最优解:)("第一章习题解答⎪⎧≤++−≤++++=151565935121510max 321321x x x x x x x x x Z 该题无可行解。
解:设阶段变量: k=1,2,3状态变量: 第k 个月初的库存量 决策变量: 第k 个月的生产量 状态转移方程: 阶段指标:由于在4月末, 仓库存量为0, 所以对于k=4阶段来说有两种决策:5+4=9 40x4()f x =1 41x对K=3 334()54()f x x f xK=2解得: 第一个月生产500份, 第二个月生产600份, 第三个月生产0份, 第四个月生产0份。
7.4某公司有资金4万元, 可向A, B, C三个项目投资, 已知各项目不同投资额的相应效益值如表7-20所示, 问如何分配资金可使总效益最大。
表7-20解:设阶段变量k, , 每一个项目表示一个阶段;状态变量Sk, 表示可用于第k阶段及其以后阶段的投资金额;决策变量Uk, 表示在第k阶段状态为Sk下决定投资的投资额;决策允许集合: 0≤Uk≤Sk状态转移方程: Sk+1=Sk-Uk;阶段指标函数: V k(SkUk);最优指标函数: fk(Sk)=max{ V k(SkUk)+ fk+1(Sk+1)}终端条件: f4(x4)=0;K=4, f4(x4)=0k=3, 0≤U3≤S3k=2, 0≤U2≤S2k=1, 0≤U1≤S1所以根据以上计算, 可以得到获得总效益最大的资金分配方案为(1, 2, 1).解: 设第k阶段的状态为Sk;第k阶段决定投入的备件为Xk;Ck(Xk)为第k阶段选择k个零件的费用;Rk(Xk)为第k个阶段选择k个零件的可靠性。
状态转移方程为: Sk+1=Sk- Ck(Xk)递退方程:114431()max{()()}()1()(1)k k K k k k K k K i i k f s R x f s f s C x S C =+=+⎧⎪=⎪⎪=⎨⎪⎪≤-⎪⎩∑所以有上可知当A 1;A 2;A 3;分别为k=1;k=2;k=3时S 1=8; S 2=5,6,7; S 3=1,2,3,4;由上表可知, 最优解的可靠性为0.042;此时X1=1;X2=1;X3=3。
胡运权运筹学第五版答案【篇一:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)412该问题有无穷多最优解,即满足4x1z?3。
6x26且0?x2?的所有?x1,x2?,此时目标函数值(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.2(a) 约束方程组的系数矩阵12a833106?403000200??0?1t最优解x??0,10,0,7,0,0?。
(b) 约束方程组的系数矩阵1a222314??2??最优解1.3(a)(1) 图解法11??2x??,0,,0?5?5?t。
最优解即为?3x14x295x12x28的解x31,2,最大值z352(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?10x1?5x2?0x3?0x4?3x1?4x2?x3?9s.t. ?5x12x2x48则p3,p4组成一个基。
令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表12。
??min?898,53?520,??min?2183,??142?2?新的单纯形表为1,20,表明已找到问题最优解x1?1, x2?32,x3?0 , x4?0。
最大值z*352(b) (1) 图解法6x1?2x2x1?x2?最优解即为?6x12x224x1?x2?5的解x73,22?,最大值z172(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 max z?2x1?x2?0x3?0x4?0x55x2?x3?15??s.t. ?6x1?2x2?x4?24xxx5125则p3,p4,p5组成一个基。
令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表12。
??min??,245?,??461?155,24,20,??min?3?32?2新的单纯形表为【篇二:运筹学基础及应用第四版胡运权主编课后练习答案】xt>习题一 p46 1.1 (a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。
胡运权排队论习题解10.1某修理店只有一个修理工人, 来修理的顾客到达次数服从普阿松分布,平均每小时3人,修理时间服从负指数分布,平均需10分钟, 求(1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间;(8) 必须在店内消耗15分钟以上的概率.04440s q s q 60M /M /1//3 6.1031(1)p 1162111(2)p (1)(1)()223211(3)1p 1223(4)L 1()631312(5)L ()632111(6)()633112(7)()636(8)1-F()W W λμρρρλμλρλμλμλρμλω∞∞====-=-==-=-=-=-====--⋅===--===--===--解:该系统为()模型,,;;;人;人;小时;小时;1515-(6-3)--(-)6020eee .μλω⨯===11(1)(2)(3)23211(4)(5)2211(6)(7)(8)3615.15-20答:修理店空闲时间概率为;店内有三个顾客的概率为;店内至少有一个顾客的概率为;店内顾客平均数为1人;等待服务顾客平均数为人;在店内平均逗留时间分钟;平均等待修理时间为分钟;必须在店内消耗分钟以上的概率为e10.22015(1)(2)(3)(4) 1.25M /M /1.603(/20λ==设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为分钟,打字时间服从指数分布,平均时间为分钟,求顾客来打字不必等待的概率;打字室内顾客的平均数;顾客在打字室内平均逗留时间;若顾客在打字室内的平均逗留时间超过小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做?解:该题属模型人小时0s s s 60)4(/).1531(1)p 11443(2)L 3()4311(3)1()431(4)1.2511.25 3.23.230.2(/).4W W μρλμλμλμλλλ===-=-====--===--=>-≥>-=-,人小时;人;小时;;,,人小时1(1)(2)3(3)41(4)0.2/.答:顾客来打字不必等待的概率为;打字室内顾客平均数为人;顾客在打字室内平均逗留时间为小时;平均到达率为人小时时,店主才会考虑增加设备及打字员 10.3 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间为38s 。
P66: 8.某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点出售,各工厂A 1, A 2,A 3的生产量、各销售点B 1,B 2,B 3,B 4的销售量(假定单位为t )以及各工厂到销售点的单位运价(元/t )示于下表中,问如何调运才能使总运费最小?解:一、该运输问题的数学模型为:可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6.34333231242322213141141312116115893102114124min x x x x x x x x x x x x x c z i j ij ij +++++++++++==∑∑==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,01412148221016342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111⨯⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭二、给出运输问题的初始可行解(初始调运方案)1. 最小元素法思想:优先满足运价(或运距)最小的供销业务。
其余(非基)变量全等于零。
此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6).总运费为(目标函数值) ,1013=x ,821=x ,223=x ,1432=x ,834=x ,614=x ∑∑===3141i j ij ij x c Z 246685143228116410=⨯+⨯+⨯+⨯+⨯+⨯=2. 伏格尔(Vogel)法伏格尔法的基本思想:运输表中各行各列的最小运价与次小运价之差值(罚数)应尽可能地小。