《排队论》习题解答
- 格式:ppt
- 大小:652.50 KB
- 文档页数:18
运筹学第三版胡运权郭耀煌黄⾊封⽪第九and⼗章排队论习题答案9.1 有A,B,C,D,E,F 6项⼯作,关系分别如图9-38(a),(b),试画出⽹络图。
9.2 试画出下列各题的⽹络图(见表9-8,表9-9,表9-10),并为事项编号。
9.3 设有如图9-39,图9-40⽹络图,⽤图上计算法计算时间参数,并求出关键路线。
9.4 绘制表9-11,表9-12所⽰的⽹络图,并⽤表上计算法计算⼯作的各项时间参数、确定关键路线。
9.5 某⼯程资料如表9-13所⽰。
要求:(1)画出⽹络图。
(2)求出每件⼯作⼯时的期望值和⽅差。
(3)求出⼯程完⼯期的期望值和⽅差。
(4)计算⼯程期望完⼯期提前3天的概率和推迟5天的概率。
解:每件⼯作的期望⼯时和⽅差见表9-13的左部。
⼯程完⼯期的期望值为32个⽉,⽅差为5(1+1+1+1+1)。
⼯程期望完⼯期提前3天的概率为0.09,推迟5天的概率为0.987。
9.6 对图9-41所⽰⽹络,各项⼯作旁边的3个数分别为⼯作的最乐观时间、最可能时间和最悲观时间,确定其关键路线和最早完⼯时间的概率。
根据关键线路,再考虑到其他线路上的时差很多,可知最早完⼯时间应该等于关键线路上各个⼯作最早完⼯时间之和:4+2+6+2+3=2=19 。
概率为0.005 。
9.7 某项⼯程各道⼯序时间及每天需要的⼈⼒资源如图9-42所⽰。
图中,箭线上的英⽂字母表⽰⼯序代号,括号内数值是该⼯序总时差,箭线下左边数为⼯序⼯时,括号内为该⼯序每天需要的⼈⼒数。
若⼈⼒资源限制每天只有15⼈,求此条件下⼯期最短的施⼯⽅案。
解:最短⼯期还是15天。
各个⼯作的开始时间如下图所⽰:9.8 已知下列⽹络图有关数据如表9-14,设间接费⽤为15元/天,求最低成本⽇程。
解:将①→②缩短两天,总⼯期为25天,直接费⽤7420元,间接费⽤375元,最⼩总费⽤为7795元。
⽹络图和关键线路如下:9.9 ⼀项⼩修计划包括的⼯作如表9-15所⽰。
排队论习题及答案排队论习题及答案排队论是概率论和数学统计中的一个重要分支,研究的是随机事件的排队问题。
在现实生活中,我们经常会遇到排队的情况,如等候乘坐公交车、购物结账等。
排队论的研究可以帮助我们更好地理解和优化排队过程,提高效率和服务质量。
下面,我们将介绍几个排队论的习题及其解答。
习题一:某银行有两个窗口,顾客到达银行的时间服从平均到达率为λ的泊松分布,每个顾客在窗口办理业务的时间服从平均服务率为μ的指数分布。
求平均等待时间和平均排队长度。
解答:首先,我们可以根据泊松分布和指数分布的性质,得到顾客到达时间和服务时间之间的关系。
假设顾客到达时间服从泊松分布,到达率为λ,那么两个顾客到达时间之间的时间间隔服从参数为λ的指数分布。
同样,假设顾客的服务时间服从指数分布,服务率为μ,那么两个顾客的服务时间之间的时间间隔服从参数为μ的指数分布。
根据排队论的基本原理,平均等待时间等于平均排队长度除以到达率。
平均排队长度可以通过利用排队论的公式计算得到。
在本题中,根据M/M/2模型,可以得到平均排队长度的公式为:Lq = λ^2 / (2μ(μ - λ))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率。
接下来,我们可以计算平均等待时间。
根据排队论的公式,平均等待时间等于平均排队长度除以到达率。
所以,平均等待时间的公式为:Wq = Lq / λ综上所述,我们可以通过计算得到平均等待时间和平均排队长度。
习题二:某餐厅有4个服务台,每个服务台的服务时间服从平均服务率为μ的指数分布,顾客到达时间服从平均到达率为λ的泊松分布。
求平均等待时间和平均排队长度。
解答:在这个问题中,我们可以使用M/M/4模型来求解。
根据M/M/4模型,平均排队长度的公式为:Lq = (λ/μ)^4 * (1/(4! * (1 - ρ)))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率,ρ表示系统繁忙度。
平均等待时间的公式为:Wq = Lq / λ通过计算可以得到平均等待时间和平均排队长度。
《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
9.1 有A,B,C,D,E,F 6项工作,关系分别如图9-38(a),(b),试画出网络图。
9.2 试画出下列各题的网络图(见表9-8,表9-9,表9-10),并为事项编号。
9.3 设有如图9-39,图9-40网络图,用图上计算法计算时间参数,并求出关键路线。
9.4 绘制表9-11,表9-12所示的网络图,并用表上计算法计算工作的各项时间参数、确定关键路线。
9.5 某工程资料如表9-13所示。
要求:(1)画出网络图。
(2)求出每件工作工时的期望值和方差。
(3)求出工程完工期的期望值和方差。
(4)计算工程期望完工期提前3天的概率和推迟5天的概率。
解:每件工作的期望工时和方差见表9-13的左部。
工程完工期的期望值为32个月,方差为5(1+1+1+1+1)。
工程期望完工期提前3天的概率为0.09,推迟5天的概率为0.987。
9.6 对图9-41所示网络,各项工作旁边的3个数分别为工作的最乐观时间、最可能时间和最悲观时间,确定其关键路线和最早完工时间的概率。
根据关键线路,再考虑到其他线路上的时差很多,可知最早完工时间应该等于关键线路上各个工作最早完工时间之和: 4+2+6+2+3=2=19 。
概率为0.005 。
9.7 某项工程各道工序时间及每天需要的人力资源如图9-42所示。
图中,箭线上的英文字母表示工序代号,括号内数值是该工序总时差,箭线下左边数为工序工时,括号内为该工序每天需要的人力数。
若人力资源限制每天只有15人,求此条件下工期最短的施工方案。
解:最短工期还是15天。
各个工作的开始时间如下图所示:9.8 已知下列网络图有关数据如表9-14,设间接费用为15元/天,求最低成本日程。
解:将①→②缩短两天,总工期为25天,直接费用7420元,间接费用375元,最小总费用为7795元。
网络图和关键线路如下:9.9 一项小修计划包括的工作如表9-15所示。
(1)正常计划工期与最小工期各是多少天?(2)日常经营费为50元/天,最佳工期应是多少天?列出每项工作的相应工时。
排队论习题解10.1某修理店只有一个修理工人, 来修理的顾客到达次数服从普阿松分布,平均每小时3人,修理时间服从负指数分布,平均需10分钟, 求(1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间;(8) 必须在店内消耗15分钟以上的概率.04440s q s q 60M /M /1//3 6.1031(1)p 1162111(2)p (1)(1)()223211(3)1p 1223(4)L 1()631312(5)L ()632111(6)()633112(7)()636(8)1-F()W W λμρρρλμλρλμλμλρμλω∞∞====-=-==-=-=-=-====--⋅===--===--===--解:该系统为()模型,,;;;人;人;小时;小时;1515-(6-3)--(-)6020eee .μλω⨯===11(1)(2)(3)23211(4)(5)2211(6)(7)(8)3615.15-20答:修理店空闲时间概率为;店内有三个顾客的概率为;店内至少有一个顾客的概率为;店内顾客平均数为1人;等待服务顾客平均数为人;在店内平均逗留时间分钟;平均等待修理时间为分钟;必须在店内消耗分钟以上的概率为e10.22015(1)(2)(3)(4) 1.25M /M /1.603(/20λ==设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为分钟,打字时间服从指数分布,平均时间为分钟,求顾客来打字不必等待的概率;打字室内顾客的平均数;顾客在打字室内平均逗留时间;若顾客在打字室内的平均逗留时间超过小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做?解:该题属模型人小时0s s s 60)4(/).1531(1)p 11443(2)L 3()4311(3)1()431(4)1.2511.25 3.23.230.2(/).4W W μρλμλμλμλλλ===-=-====--===--=>-≥>-=-Q ,人小时;人;小时;;,,人小时1(1)(2)3(3)41(4)0.2/.答:顾客来打字不必等待的概率为;打字室内顾客平均数为人;顾客在打字室内平均逗留时间为小时;平均到达率为人小时时,店主才会考虑增加设备及打字员 10.3 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间为38s 。