【中考模拟】江西省2018年中考数学模拟试卷(一)含答案
- 格式:docx
- 大小:2.01 MB
- 文档页数:13
16一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) )B.2 xlO -2)1.2 cm 2 = a n?,贝lj a=( A.2 xlO 22.下列运算中,正确的是( A. - (TH + n) =n —m C. m 3 Xm 2 = in3. 下列说法中不正确的是(C.2 X104T ) / 2 \ 36 5D .\ m n ) =m nr 、 3.3n - n = nD.2 xWA.某种彩票中奖的概率是 )点,买1 ooo 张该种彩票一定会中奖时到达,于是他改乘出租车赶往学校,他的路程与时间的关系如图 所示(假定总路程为1,出租车匀速行驶),则他到达学校所花的时 间比一直步行提前了( )A.18分钟B.20分钟C.24分钟D.28分钟2018年江西省中等学校招生考试数学模拟卷(一)说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.二、填空题(本大题共6小题,每小题3分,共18分)懲5-H(第4题)5.下列图形中,既是轴对称图形,又是中心对称图形的是(B. 了解一批电视机的使用寿命适合用抽样调查C. 若甲组数据的方差为0. 31,乙组数据的方差为0. 25 ,则乙组数据比甲组数据稳定D. 在一个装有白球和绿球的袋中摸球,摸岀黑球是不可能事件 4.如图所示的几何体,其俯视图是(一日小明步行前往学校,5分钟走了总路程的£,估计步行不能准 O7.若a与b互为相反数,则a + b = .8.计算:(旧+石)(疗-厅)= ___________ .9.某校学生到校方式情况的统计图如图所示.若该校步行到校的学生有100人,则乘公共汽10.如图,矩形纸片ABCD中,曲=4,如=6.将△仙C沿4C折叠,使点3落在点E处,隽交AD于点/,则DF的长等于.11.方程弓+宀=1的解为x -4 4 -X ------------12.在一组对边相等但不平行,另一组对边平行但不相等的四边形中,有三边长分别是5,7, 10,则这个四边形的周长为.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)先化简,再求值:(a -2)2 + a(a+4),其中a =^3.(2)如图,AB//CD,AE平分A CAB交CQ于点芯.若Z_C=70°,求乙旭Q的度数.3化-1 <2(% + 1),%+3 1 并写出不等式组的整数解.14.解不等式组2615.如图,在LJ ABCD中,点E在BC如,AB=BE,BF平分乙ABC交曲于点F.请仅用无刻度的直尺,按要求画图(保留画图痕迹,不写画法).(1)在图1中,过点4画出时中BF边上的高;(2)在图2中,过点C画出的垂线.16.某班甲、乙两个学习小组,在一次电脑操作水平测试后,甲组的六位同学的成绩(分)依次是90,91,70,64,91,74,乙组的六位同学中有一位同学的成绩是88分,其他同学的成绩, 老师只公布了他们的得分与本组的平均分数的差,依次为-3, -8, -12,5,13.(1)求甲组的六位同学考试成绩的平均数、中位数和众数;(2)求乙组的六位同学考试成绩的平均数;(3)如果老师表扬甲组的成绩好于乙组,那么老师在平均数、众数、中位数中选用的是哪个数分别代表两组的成绩?17.你玩过“十点半”游戏吗?这种游戏的其中一种玩法是:将同一副扑克中的13张红心牌(其中红心A为1点,红心“ J, Q, K”分别为半点,其他牌面数字是几就是几点)洗匀后分开,并正面朝下放在桌面上.两个游戏者每人从这些牌中最多只有三次随机摸牌的机会 (每次只能摸1张,不放回),摸出来的牌的点数和谁多谁就获胜(点数和相等不算胜),但点数和不能多于十点半,否则以0计算.现在小张首先摸岀的是红心6,小王摸出的是红心4,第二次小张摸出的是红心K,而小王摸出的是红心J,到此小张决定不摸第三次,根据概率的知识请你分析以下问题:(1)若小王也不摸第三次,小张在游戏中获胜是什么事件?若小王摸第三次呢?(2)求小王摸第三次获胜的概率.四、(本大题共3小题,每小题8分,共24分)18.某文具店销售甲、乙两种圆规,销售5只甲种、1只乙种圆规,可获利润25元;销售6只甲种、3只乙种圆规,可获利润39元.(1)该文具店销售甲、乙两种圆规,每只的利润分别是多少元?(2)文具店共销售甲、乙两种圆规50只,其中甲种圆规。
2018年江西中考模拟卷时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.|-2|的值是( ) A.-2 B.2 C.-12 D.122.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A.204×103B.20.4×104C.2.04×105D.2.04×1063.观察下列图形,其中既是轴对称又是中心对称图形的是( )4.下列计算正确的是( )A.3x 2y +5xy =8x 3y 2B.(x +y )2=x 2+y 2C.(-2x )2÷x =4xD.y x -y +xy -x=15.已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则1x1+1x2的值为( )A.2B.-1C.-12D.-26.如图,在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE ∥AC ,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A.若AD ⊥BC ,则四边形AEDF 是矩形B.若AD 垂直平分BC ,则四边形AEDF 是矩形C.若BD =CD ,则四边形AEDF 是菱形D.若AD 平分∠BAC ,则四边形AEDF 是菱形第6题图 第8题图二、填空题(本大题共6小题,每小题3分,共18分) 7.计算:-12÷3= .8.如图,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为 .9.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=-1,那么(1+i )·(1-i )= .10.已知某几何体的三视图如图所示,根据图中数据求得该几何体的表面积为 .第10题图 第12题图11.一个样本为1,3,2,2,a ,b ,c ,已知这个样本的众数为3,平均数为2,则这组数据的中位数为 .12.如图,在平面直角坐标系中,△ABC 为等腰直角三角形,点A (0,2),B (-2,0),点D 是x 轴上一个动点,以AD 为一直角边在一侧作等腰直角三角形ADE ,∠DAE =90°.若△ABD 为等腰三角形,则点E 的坐标为 .三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:⎩⎨⎧3x -1≥x +1,x +4<4x -2.(2)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:△ADF ≌△BCE .14.先化简,再求值:⎝⎛⎭⎫m m -2-2m m2-4÷m m +2,请在2,-2,0,3当中选一个合适的数代入求值.15.为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.16.根据下列条件和要求,仅使用无刻度的直尺画图,并保留画图痕迹:(1)如图①,△ABC中,∠C=90°,在三角形的一边上取一点D,画一个钝角△DAB ;(2)如图②,△ABC中,AB=AC,ED是△ABC的中位线,画出△ABC的BC边上的高.17.如图所示是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80 cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠F GK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G ,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(参考数据:sin80°≈0.98,cos80°≈0.17,2≈1.41,结果精确到0.1cm)?四、(本大题共3小题,每小题8分,共24分)18.某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是°;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.19.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20页时,每页收费0.12元;一次复印页数超过20页时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.20.如图,一次函数y=-2x+1与反比例函数y=错误!的图象有两个交点A(-1,m)和B,过点A作AE⊥x轴,垂足为点E.过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°.①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.22.在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.六、(本大题共12分)23.综合与实践【背景阅读】早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,52的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.【实践操作】如图①,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.【问题解决】(1)请在图②中证明四边形AEFD是正方形.(2)请在图④中判断NF与ND′的数量关系,并加以证明.(3)请在图④中证明△AEN是(3,4,5)型三角形.【探索发现】(4)在不添加字母的情况下,图④中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.参考答案与解析1.B 2.C 3.D 4.C 5.D 6.D7.-4 8.60°9.2 10.(225+252)π11.212.(2,2)或(2,4)或(2,22)或(2,-22)解析:连接EC .∵∠BAC =∠DAE =90°,∴∠BAD =∠CAE .在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =EC ,∠ABD =∠ACE =45°.∵∠ACB =45°,∴∠ECD =90°,∴点E 在过点C 且垂直x 轴的直线上.①当DB =DA 时,点D 与O 重合,BD =OB =2,此时E (2,2).②当AB =AD 时,CE =BD =4,此时E (2,4).③当BD =AB =22时,E (2,22)或(2,-22).故点E 的坐标为(2,2)或(2,4)或(2,22)或(2,-22).13.(1)解:解不等式3x -1≥x +1,得x ≥1,解不等式x +4<4x -2,得x >2,∴不等式组的解集为x >2.(3分)(2)证明:∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE .在△ADF 与△BCE 中,⎩⎪⎨⎪⎧AD =BC ,∠A =∠B ,AF =BE ,∴△ADF ≌△BCE (SAS).(6分) 14.解:原式=⎣⎡⎦⎤m m -2-2m (m -2)(m +2)×m +2m=m m -2×m +2m -2m(m -2)(m +2)×m +2m=m +2m -2-2m -2=m m -2.(3分)∵m ≠±2,0,∴m =3.(4分)当m =3时,原式=3.(6分) 15.解:(1)∵垃圾要按A ,B ,C 三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类的概率为13.(2分)(2)如图所示.(4分)由树状图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,∴P (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23.(6分)16.解:(1)如图①所示.(3分)(2)如图②所示,AF 即为BC 边上的高.(6分)17.解:(1)如图,过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .∵EF +FG =166cm ,F G =100cm ,∴EF =66cm.∵∠FGK =80°,∴∠GFN =10°,FN =100·sin80°≈98(cm).∵∠EFG =125°,∴∠EFM =180°-125°-10°=45°,∴FM =66·cos45°=332≈46.53(cm),∴MN =FN +FM ≈144.5cm ,∴此时小强头部E 点与地面DK 相距约为144.5cm.(3分)(2)过点E 作EP ⊥AB 于点P ,延长OB 交MN 于H .∵AB =48cm ,O 为AB 的中点,∴AO =B O =24cm.∵EM =66·sin45°≈46.53cm ,∴PH ≈46.53cm.∵GN =100·cos80°≈17cm ,CG =15cm ,∴OH =24+15+17=56cm ,OP =OH -PH =56-46.53=9.47≈9.5(cm),∴他应向前9.5cm.(6分)18.解:(1)126(2分) (2)根据题意得40÷40%=100(人),∴使用手机3小时以上的人数为100-(2+16+18+32)=32(人),补全条形统计图,如图所示.(5分)(3)根据题意得1200×32+32100=768(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有768人.(8分)19.解:(1)1 3 1.2 3.3(2分)(2)y 1=0.1x (x ≥0); y 2=⎩⎨⎧0.12x (0≤x≤20),0.09x +0.6(x >20).(5分)(3)顾客在乙复印店复印花费少.(6分)当x >70时,y 1=0.1x ,y 2=0.09x +0.6,∴y 1-y 2=0.1x -(0.09x +0.6)=0.01x -0.6.(6分)设y =0.01x -0.6,由0.01>0,则y 随x 的增大而增大.当x =70时,y =0.1,∴x >70时,y >0.1,∴y 1>y 2,∴当x >70时,顾客在乙复印店复印花费少.(8分)20.解:(1)∵一次函数y =-2x +1的图象经过点A (-1,m ),∴m =2+1=3,∴A (-1,3).(2分)∵反比例函数y =kx的图象经过A (-1,3),∴k =-1×3=-3.(4分)(2)如图,延长AE ,BD 交于点C ,则∠ACB =90°.∵BD ⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2),∴令y =-2,则-2=-2x +1,∴x =32,即B ⎝⎛⎭⎫32,-2,∴C (-1,-2),∴AC =3-(-2)=5,BC =32-(-1)=52.(6分)∴S 四边形AEDB =S △ABC -S △CDE =12AC ·BC -12CE ·CD =12×5×52-12×2×1=214.(8分)21.(1)证明:∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA.∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO.(3分)(2)解:①∵AD∥OC,∴∠EOC=∠DAO=105°.∵∠E=30°,∴∠OCE=180°-105°-30°=45°.(5分)②如图,作OG⊥CE于点G,则CG=FG.∵∠OCG=45°,∴CG=OG.∵OC=22,∠OCE=45°,∴CG=OG=2,∴FG=2.(7分)在Rt△OGE中,∠E=30°,∴GE=23,∴EF =GE-FG=23-2.(9分)22.解:(1)由函数y1的图象经过点(1,-2),得(a+1)(-a)=-2,解得a1=-2,a2=1.当a=-2或1时,函数y1化简后的结果均为y1=x2-x-2,∴函数y1的表达式为y=x2-x-2 .(3分)(2)当y=0时,(x+a)(x-a-1)=0,解得x1=-a,x2=a+1,∴y1的图象与x轴的交点是(-a,0),(a+1,0).(4分)当y2=ax+b经过(-a,0)时,-a2+b=0,即b=a2;(5分)当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=-a2-a.(6分)(3)由题意知,函数y1的图象对称轴为直线x=12.∴点Q(1,n)与点(0,n)关于直线x=12对称.(7分)∵函数y1的图象开口向上,∴当m<n时,0<x0<1.(9分)23.(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°.由折叠知AE=AD,∠AEF =∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形.∵AE=AD,∴矩形AEFD是正方形.(3分)(2)解:NF=ND′.(4分)证明如下:如图,连接HN.由折叠知∠AD′H=∠D=90°,HF=H D=HD′.由(1)知四边形AEFD是正方形,∴∠EFD=90°.∵∠AD′H=90°,∴∠HD′N=90°.在Rt△HNF和Rt△HND′中,∵HN=HN,HF=HD′,∴Rt△HNF≌Rt△HND′,∴NF=ND′. (6分)(3)证明:由(1)知四边形AEFD是正方形,∴AE=EF=AD=8cm.设NF=ND′=x cm,由折叠知AD′=AD=8cm,EN=EF-NF=(8-x)cm.在Rt△AEN中,由勾股定理得AN2=AE2+EN2,即(8+x)2=82+(8-x)2,解得x=2,∴AN=8+x=10(cm),EN=6(cm),∴EN∶AE∶AN=6∶8∶10=3∶4∶5,∴△AEN是(3,4,5)型三角形.(9分)(4)解:∵△AEN是(3,4,5)型三角形,∴与△AEN相似的三角形都是(3,4,5)型三角形,∴图④中的(3,4,5)型三角形分别为△MFN,△MD′H,△MDA.(12分)。
2018年江西省南昌市中考数学一模试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列四个数:﹣2,1,﹣,π,其中最小的数是()A.﹣2B.1C.﹣D.π2.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014 3.(3分)下列运算结果,不正确的是()A.﹣x+12x=11x B.(x+1)2=x2+1C.(﹣2x2)3=﹣8x6D.﹣12x3÷3x=﹣4x24.(3分)不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.(3分)如图,是一个放置在水平实验台上的锥形瓶,它的左视图是()A.B.C.D.6.(3分)如图,点A、B、C都在⊙O上,且点C在弦AB所对的优弧上,如果∠AOB=64°,那么∠ACB的度数是()A.26°B.30°C.32°D.64°二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.8.(3分)若一组数据2,a,3,5,8的平均数为4,则这组数据的中位数是.9.(3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是.10.(3分)若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是.11.(3分)若抛物线y=(x﹣1)2+c过点(2,﹣1),且向左平移4个单位,则所得新抛物线的解析式是.12.(3分)如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C 是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程组(2)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=145°,求∠B的度数.14.(6分)先化简()÷,再从﹣2,0,1,2中选取一个符合要求的数代入求值.15.(6分)如图是由6个形状、大小完全相同的小矩形组成的大矩形,其中小矩形的长为2,宽为1,请用无刻度的直尺在矩形中完成以下作图(保留作图痕迹,不写作法).(1)在图1中,画出一个面积为5的正方形;(2)在图2中,画出一个面积为4的非特殊的平行四边形.16.(6分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)下列事件是不可能事件的是A.选购甲品牌的B型号;B.选购甲品牌的C型号和乙品牌的D型号;C.既选购甲品牌也选购乙品牌;D.只选购乙品牌的E型号.(2)用列表法或树状图法,写出所有的选购方案,若每种方案被选中的可能性相同,求A型号的器材被选中的概率?17.(6分)如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO 时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC =12cm.(1)当P A=45cm时,求PC的长;(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)为创建大数据应用示范城市,某市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),如图是部分四类生活信息关注度不完整的统计图表,请根据图中提供的信息解答下列问题:(1)求本次参与调查的人数;(2)补全条形统计图,并求扇形统计图中D部分的扇形圆心角的度数;(3)写出一条从统计图中获取的信息.19.(8分)某市风景区门票价格如图所示,现有甲乙两个旅行团队,计划在“十一”黄金周期间到该景点游玩.两团队游客人数之和为120人,甲团队人数不超过50人,乙团队人数为x人,但不足100人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的关系式,并说明两队联合购票比分别购票最多可节约多少元?(2)“十一”黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,若甲、乙两个旅行团队“十一”黄金周之后去游玩,最多节约3400元,求a的值.20.(8分)已知⊙O的直径AB为2,点C是⊙O上,∠CAB=30°,点D是⊙O 上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时.①求证:△ACD是等边三角形;②求△CDE的面积.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)如图,在平行四边形ABCD中,AD∥x轴,AD=6,原点O是对角线AC的中点,顶点A的坐标为(﹣2,2),反比例函数y=(k≠0)在第一象限的图象过四边形ABCD的顶点D.(1)求点D的坐标和k的值;(2)将平行四边形ABCD向上平移,使点C落在反比例函数图象在第一象限的分支上,求平移过程中线段AC扫过的面积.(3)若P、Q两点分别在反比例函数图象的两支上,且四边形APCQ是菱形,求PQ的长.22.(9分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线.(1)①当顶点为(1,2)时,则a=;②当顶点为(m,2m),且m≠0时,则a与m之间的关系式是(2)当此抛物线的顶点在直线y=kx上,且b≠0时,用含k的代数式表示b;(3)现有一组过原点的抛物线,它们的顶点A1,A2,…,A n在直线y=2x上,其横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n∁n D n,若这组抛物线中有一条经过D n,求此时满足条件的正方形A n B n∁n D n的边长.六、填空题(本大题共1小题,共12分)23.(12分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这边上的“奇特三角形”,这条边称为“奇特边”.(1)如图1,已知△ABC是奇特三角形,AC>BC,且∠C=90°..①△ABC的奇特边是;②设BC=a,AC=b,AB=c,求a:b:c;(2)如图2,AM是△ABC的中线,若△ABC是BC边上的奇特三角形,找出BC2与AB2+AC2之间的关系.(3)如图3,在四边形ABCD中,∠B=90°(AB<BC),BC=2,对角线AC把它分成了两个奇特三角形,且△ACD是以AC为腰的等腰三角形,求等腰三角形ACD的底边长.2018年江西省南昌市中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列四个数:﹣2,1,﹣,π,其中最小的数是()A.﹣2B.1C.﹣D.π【解答】解:根据实数比较大小的方法,可得﹣2<﹣<1<π,∴四个数:﹣2,1,﹣,π,其中最小的数是﹣2.故选:A.2.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014【解答】解:将1000亿用科学记数法表示为:1×1011.故选:C.3.(3分)下列运算结果,不正确的是()A.﹣x+12x=11x B.(x+1)2=x2+1C.(﹣2x2)3=﹣8x6D.﹣12x3÷3x=﹣4x2【解答】解:A、﹣x+12x=11x,正确,不合题意;B、(x+1)2=x2+2x+1,错误,符合题意;C、(﹣2x2)3=﹣8x6,正确,不合题意;D、﹣12x3÷3x=﹣4x2,正确,不合题意;故选:B.4.(3分)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集是﹣3<x≤1,在数轴上表示为,故选:D.5.(3分)如图,是一个放置在水平实验台上的锥形瓶,它的左视图是()A.B.C.D.【解答】解:锥形瓶的左视图为选项A中图形.故选:A.6.(3分)如图,点A、B、C都在⊙O上,且点C在弦AB所对的优弧上,如果∠AOB=64°,那么∠ACB的度数是()A.26°B.30°C.32°D.64°【解答】解:∵∠ACB=∠AOB,而∠AOB=64°,∴∠ACB=×64°=32°.即∠ACB的度数是32°.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.8.(3分)若一组数据2,a,3,5,8的平均数为4,则这组数据的中位数是3.【解答】解:∵数据2,a,3,5,8的平均数是4,∴=4,解得:a=2,这组数据按照从小到大的顺序排列为:2,2,3,5,8,则中位数为3.故答案为:3;9.(3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是65°.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°﹣70°﹣45°=65°,故答案为:65°.10.(3分)若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是15.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,∴x1+x2=3,x1•x2=﹣2,∴x12+x22﹣x1•x2=(x1+x2)2﹣3x1x2=32﹣3×(﹣2)=15,故答案为:15.11.(3分)若抛物线y=(x﹣1)2+c过点(2,﹣1),且向左平移4个单位,则所得新抛物线的解析式是y=(x+3)2﹣2.【解答】解:∵抛物线y=(x﹣1)2+c过点(2,﹣1),∴﹣1=(2﹣1)2+c,解得:c=﹣2,故抛物线y=(x﹣1)2﹣2向左平移4个单位,所得新抛物线的解析式为:y=(x+3)2﹣2.故答案为:y=(x+3)2﹣2.12.(3分)如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C 是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,3)、(4,0)、(,0).【解答】解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,可得P为OB的中点,此时P点坐标为(0,3);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,可得P为OA的中点,此时P点坐标为(4,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABO,∴=,∵点A(8,0)和点B(0,6),∴AB==10,∵点C是AB的中点,∴AC=5,∴=,∴AP=,∴OP=OA﹣AP=8﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,3)、(4,0)、(,0).故答案为:(0,3)、(4,0)、(,0)三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程组(2)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=145°,求∠B的度数.【解答】解:(1)方程组化简,得①+②,得3x=x+2,解得x=1.把x=1代入②,得1﹣y=﹣1,解得y=2.∴原方程组的解是,(2)∵∠1=145°,∴∠EDC=180°﹣∠1=35°.∵DE∥BC,∴∠C=∠EDC=35°.在△ABC中,∠A=90°,∴∠B=90°﹣∠C=90°﹣35°=55°.14.(6分)先化简()÷,再从﹣2,0,1,2中选取一个符合要求的数代入求值.【解答】解:()÷===,当m=1时,原式==﹣1.15.(6分)如图是由6个形状、大小完全相同的小矩形组成的大矩形,其中小矩形的长为2,宽为1,请用无刻度的直尺在矩形中完成以下作图(保留作图痕迹,不写作法).(1)在图1中,画出一个面积为5的正方形;(2)在图2中,画出一个面积为4的非特殊的平行四边形.【解答】解:(1)如图正方形ABCD;(2)如图平行四边形EFGH.16.(6分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)下列事件是不可能事件的是DA.选购甲品牌的B型号;B.选购甲品牌的C型号和乙品牌的D型号;C.既选购甲品牌也选购乙品牌;D.只选购乙品牌的E型号.(2)用列表法或树状图法,写出所有的选购方案,若每种方案被选中的可能性相同,求A型号的器材被选中的概率?【解答】解:(1)A、选购甲品牌的B型号是随机事件;B、选购甲品牌的C型号和乙品牌的D型号是随机事件;C、既选购甲品牌也选购乙品牌是必然事件;D、只选购乙品牌的E型号是不可能事件;故选:D;(2)用树状图法表示是:由树状图可知,共有6种等可能的结果,其中A选中有2种结果,即AD、AE,∴选中A型号的概率=.17.(6分)如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO 时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC =12cm.(1)当P A=45cm时,求PC的长;(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)【解答】解:(1)当P A=45cm时,连结PO.∵D为AO的中点,PD⊥AO,∴PO=P A=45cm.∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36cm,PC==27cm;(2)当∠AOC=120°,过D作DE⊥OC交BO延长线于E,过D作DF⊥PC 于F,则四边形DECF是矩形.在Rt△DOE中,∵∠DOE=60°,DO=AO=12,∴DE=DO•sin60°=6,EO=DO=6,∴FC=DE=6,DF=EC=EO+OB+BC=6+24+12=42.在Rt△PDF中,∵∠PDF=30°,∴PF=DF•tan30°=42×=14,∴PC=PF+FC=14+6=20≈34.6>27,∴点P在直线PC上的位置上升了,此时PC的长约是34.6cm.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)为创建大数据应用示范城市,某市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),如图是部分四类生活信息关注度不完整的统计图表,请根据图中提供的信息解答下列问题:(1)求本次参与调查的人数;(2)补全条形统计图,并求扇形统计图中D部分的扇形圆心角的度数;(3)写出一条从统计图中获取的信息.【解答】解:(1)本次参与调查的人数为200÷20%=1000人;(2)B类别人数为1000﹣(250+200+400)=150人,补全图形如下:(3)由条形图知,大家关心交通信息较多,关心城市医疗信息人数最少.19.(8分)某市风景区门票价格如图所示,现有甲乙两个旅行团队,计划在“十一”黄金周期间到该景点游玩.两团队游客人数之和为120人,甲团队人数不超过50人,乙团队人数为x人,但不足100人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的关系式,并说明两队联合购票比分别购票最多可节约多少元?(2)“十一”黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,若甲、乙两个旅行团队“十一”黄金周之后去游玩,最多节约3400元,求a的值.【解答】解:(1)由题意,甲团队不超过50人,则乙团队x人满足70≤x<100.∴W=80(120﹣x)+70x=﹣10x+9600,∵﹣10<0,∴W随x的增大而减小,∴当x=70时,W有最大值,即为8900(元),∵两队联合购票费用为60×120=7200(元),∴两队联合购票比分别购票最多可节约8900﹣7200=1700(元).(2)由题意,得W=80(120﹣x)+(70﹣a)x=﹣(10+a)x+9600.当x=70时,W有最大值﹣(10+a)×70+9600=﹣70a+8900.两队联合购票费用是(60﹣2a)×120=﹣240a+7200,根据题意,列方程(﹣70a+8900)﹣(﹣240a+7200)=3400.解得a=10.20.(8分)已知⊙O的直径AB为2,点C是⊙O上,∠CAB=30°,点D是⊙O 上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时.①求证:△ACD是等边三角形;②求△CDE的面积.【解答】(1)证明:如图1,连接OD,∵∠ACD=45°,∴∠AOD=90°,∵DE∥AB,∴∠AOD+∠EDO=180°.∴∠EDO=90°.∴OD⊥DE,∴ED是⊙O的切线.(2)①证:∵F为CD的中点,∴CF=DF.∵AB为⊙O的直径,∴AB⊥CD.∴∠AFC=90°.∴AF为CD的垂直平分线,∴AC=AD.∵∠CAB=30°,∴∠C=60°.∴△ACD是等边三角形.②解:如图2,连接BC,∵AB是⊙O的直径,∴∠ACB=90°.∵∠CAB=30°,且AB=2,∴AC=AB cos30°=,∴CD=AC=∵DE∥AB,∴∠E=∠CAB=30°,∠CDE=∠CF A=90°,∴ED==3,∴S=ED×CD=△CDE五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)如图,在平行四边形ABCD中,AD∥x轴,AD=6,原点O是对角线AC的中点,顶点A的坐标为(﹣2,2),反比例函数y=(k≠0)在第一象限的图象过四边形ABCD的顶点D.(1)求点D的坐标和k的值;(2)将平行四边形ABCD向上平移,使点C落在反比例函数图象在第一象限的分支上,求平移过程中线段AC扫过的面积.(3)若P、Q两点分别在反比例函数图象的两支上,且四边形APCQ是菱形,求PQ的长.【解答】解:(1)设AD与y轴交于点E,∵AD∥x轴,∴A、D的纵坐标相同.∵A(﹣2,2),∴AE=2,∴ED=AD﹣AE=4,∴D(4,2).∵D在反比例函数y=的图象上,∴k=4×2=8;(2)∵在平行四边形ABCD中,原点O是对角线AC的中点,∴C与A关于原点对称,∴C(2,﹣2).设点C向上平移a个单位,则C′(2,﹣2+a)在y=的图象上,∴2(﹣2+a)=8,解得a=6.设CC′与AD相交于F,则AF=4.∴平移过程中线段AC扫过的面积是6×4=24;(3)∵四边形APCQ是菱形,∴PQ⊥AC.∵直线AC的解析式为y=﹣x,∴直线PQ的解析式为:y=x,设P点的坐标为(a,a)且a>0,则点Q的坐标为(﹣a,﹣a),∵P、Q两点分别在反比例函数图象的两支上,∴a=,解得:a=2,故P的坐标为:(2,2),Q的坐标为(﹣2,﹣2),∴PQ==8.22.(9分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线.(1)①当顶点为(1,2)时,则a=﹣2;②当顶点为(m,2m),且m≠0时,则a与m之间的关系式是a=﹣(2)当此抛物线的顶点在直线y=kx上,且b≠0时,用含k的代数式表示b;(3)现有一组过原点的抛物线,它们的顶点A1,A2,…,A n在直线y=2x上,其横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n∁n D n,若这组抛物线中有一条经过D n,求此时满足条件的正方形A n B n∁n D n的边长.【解答】解:(1)①∵顶点为(1,2)∴﹣=1,﹣=2,解得a=﹣2;②∵顶点为(m,2m),∴﹣=m,﹣=2m,解得a=﹣,故答案为﹣2,a=﹣;(2)由顶点(﹣,﹣)在直线y=kx上,得﹣=k(﹣),∵b≠0,∴b=2k.(3)顶点A1,A2,…,A n在直线y=2x上,∴可设A n(m,2m),点D n所在的抛物线顶点坐标为(n,2n).∴a=﹣,b=4,由(1)(2)结果知,顶点A n(m,2m)所在直的抛物线解析式是y=﹣x2+4x,设正方形A n B n∁n D n的顶点A n(m,2m)在抛物线y=﹣x2+4x上,且边长为2m,此时顶点D n(3m,2m)在另一条抛物线y=﹣x2+4x上,由﹣(3m)2+4×3m=2m,解得m=n,∵m≤n≤12,且m,n为正整数,∴当n=9时,m=5,∴2m=10,∴满足条件的正方形A5B5C5D5的边长为10.六、填空题(本大题共1小题,共12分)23.(12分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这边上的“奇特三角形”,这条边称为“奇特边”.(1)如图1,已知△ABC是奇特三角形,AC>BC,且∠C=90°..①△ABC的奇特边是较长直角边;②设BC=a,AC=b,AB=c,求a:b:c;(2)如图2,AM是△ABC的中线,若△ABC是BC边上的奇特三角形,找出BC2与AB2+AC2之间的关系.(3)如图3,在四边形ABCD中,∠B=90°(AB<BC),BC=2,对角线AC把它分成了两个奇特三角形,且△ACD是以AC为腰的等腰三角形,求等腰三角形ACD的底边长.【解答】解:(1)①∵直角三角形斜边上的中线是斜边的一半,∴斜边不是“奇特边”,∵较短直角边上的中线大于较长直角边,∴较短直角边不是“奇特边”,∴较长直角边为奇特边,故答案为:较长直角边;②设AC=BH=2x,则AH=HC=x,由勾股定理得,BC=x,AB=x,则a:b:c=:2:;(2)作BD⊥AM于D,CE⊥AM于E,设BD=x,DM=y,BM=z,在△BDM和△CEM中,∴△BDM≌△CEM,∴CE=BD=x,DM=EM=y,在Rt△ABD中,AB2=BD2+AD2=x2+(y+2z)2=x2+y2+4yz+4z2,在Rt△ACE中,AC2=AE2+EC2=x2+(2z﹣y)2=x2+y2﹣4yz+4z2,则AB2+AC2=2x2+2y2+8z2=2(x2+y2)+8z2=10z2,BC2=(2z)2=4z2,∴AB2+AC2=BC2;(3)作BC边上的中线AE,由(1)得,BC是“奇特边”,∵BC=2,则AE=2,BE=EC=,由勾股定理得,AB==,AC==7,△ACD是“奇特三角形”,当AC为“奇特边”时,72+AD2=×72,解得,AD=,当AD为“奇特边”时,(AD)2+AD2=72,解得,AD=.。
中考模拟】江西省2018年中考数学模拟试卷(一)含答案2018年江西中考模拟卷(一)一、选择题1.|-2|的值是()A。
22.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为() C。
4.64×1073.观察下列图形,其中既是轴对称又是中心对称图形的是()D。
4.下列计算正确的是()A。
3x2y+5xy=8x3y25.已知一元二次方程x2-2x-1=的两根分别为x1,x2,则(x1+1/x1)+(x2+1/x2)的值为()D。
-26.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC 于E,F两点,下列说法正确的是()B。
若AD垂直平分BC,则四边形AEDF是矩形二、填空题7.计算:-12÷3=-4.8.如图,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为60°.9.引入新数i,新数i满足分配律,结合律,交换律,已知i2=-1,那么(1+i)·(1-i)=2.10.已知某几何体的三视图如图所示,根据图中数据求得该几何体的表面积为72.11.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为2.12.如图,在平面直角坐标系中,△ABC为等腰直角三角形,点A(0,2),B(-2,0),点D是x轴上一个动点,以AD为一直角边在一侧作等腰直角三角形ADE,∠DAE=90°.若△ABD为等腰三角形,则点E的坐标为(2,-2).13.1) 将不等式组化简为2x ≥ 2,即x ≥ 1,x < (4/3),解得不等式组为x ≥ 1,x < (4/3)。
2) 因为 AD = BC,∠A = ∠B,AE = BF,所以△ADF ≌△BCE,根据 SSS 判定可知。
2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
2018年江西省中考数学模拟试卷(A卷)一、选择题(每小题3分,共18分)1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是()A.∠A=30°,∠B=40°B.∠A=30°,∠B=110°C.∠A=30°,∠B=70°D.∠A=30°,∠B=90°2.下列各数中是有理数的是()A.B.4πC.sin45°D.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>04.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.5.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同二、填空题(本大题共有6小题,每小题3分,共18分)7.把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是.8.已知y是x的一次函数,下表给出了部分对应值,则m的值是.9.关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是.10.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=.11.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,那么折痕AB的长为cm.12.已知,点P是反比例函数y=图象在第一象限上的一个动点,⊙P的半径为1,当⊙P与坐标轴相交时,点P的横坐标x的取值范围是.三、解答题(本大题共有6小题,共30分)13.先化简:(1+)÷,再选择一个恰当的x的值代入求值.14.解不等式组:.15.已知:线段m、n,(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).16.甲、乙、丙、丁四人参加某校招聘教师考试,考试后甲、乙两人去询问成绩.请你根据下面回答对甲、乙两人回答的内容进行分析.(1)列举出这四人的名次排列所有可能出现的不同情况.(2)求甲排在第一名的概率?17.某工厂用A、B、C三台机器加工生产一种产品.对2015年第一季度的生产情况进行统计,图1是三台机器的产量统计图.图2是三台机器产量的比例分布图.(图中有部分信息未给出)(1)利用图1信息,写出B机器的产量,并估计A机器的产量;(2)综合图1和图2信息,求C机器的产量.四、解答题(本大题共有4小题,共32分)18.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD 的最小值,并求取得最小值时P点的坐标.19.如图,一种某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?20.如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若的长为底面周长的,如图2所示.(1)求⊙O的半径;(2)求这个圆柱形木块的表面积.(结果可保留π和根号)21.已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD.(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)五、解答题(本大题共有1小题,共10分)22.根据如图所示的程序计算.(1)计算x=1时,y值是多少?(2)是否存在输出值y恰好等于输入值x的2倍?如果存在,请求出x的值;如果不存在,请说明理由.(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.六、解答题(本大题共有1小题,共12分)23.已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴公式为x=﹣.2018年江西省中考数学模拟试卷(A卷)参考答案与试题解析一、选择题(每小题3分,共18分)1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是()A.∠A=30°,∠B=40°B.∠A=30°,∠B=110°C.∠A=30°,∠B=70°D.∠A=30°,∠B=90°【考点】命题与定理.【分析】判断“两个锐角的和是锐角”什么情况下不成立,即找出两个锐角的和>90°即可.【解答】解:例如:若∠A=30°,∠B=70°,则∠A+∠B>90°.故选C2.下列各数中是有理数的是()A.B.4πC.sin45°D.【考点】特殊角的三角函数值.【分析】要想解决此题,首先明确有理数的分类,其次牢记特殊角的三角函数值.【解答】解:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【考点】正比例函数的性质.【分析】根据正比例函数的性质对各小题进行逐一判断即可.【解答】解:A、函数图象经过点(2,4),错误;B、函数图象经过第一、三象限,错误;C、y随x的增大而增大,正确;D、当x>0时,才有y>0,错误;故选C.4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.【考点】生活中的旋转现象.【分析】根据△ABC绕着点O逆时针旋转90°,得出各对应点的位置判断即可;【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.5.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【考点】平移的性质;简单组合体的三视图.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选:B.二、填空题(本大题共有6小题,每小题3分,共18分)7.把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是x >1.【考点】在数轴上表示不等式的解集.【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由图示可看出,从﹣2出发向右画出的线且﹣2处是实心圆,表示x≥﹣2;从1出发向右画出的线且1处是空心圆,表示x>1,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是x>1.故答案是:x>1.8.已知y是x的一次函数,下表给出了部分对应值,则m的值是﹣7.【考点】待定系数法求一次函数解析式.【分析】一次函数的一般形式为y=kx+b,根据待定系数法即可求解.【解答】解:设该一次函数的解析式为y=kx+b.由题意得,解得,故m的值是﹣7.9.关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是k≥.【考点】根的判别式.【分析】由于已知方程有实数根,则△≥0,由此可以建立关于k的不等式,解不等式就可以求出k的取值范围.【解答】解:由题意知△=(2k+1)2+4(2﹣k2)=4k+9≥0,∴k≥.10.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=2.【考点】三角形的内切圆与内心.【分析】设AB、BC、AC与⊙O的切点分别为D、E、F;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC﹣AB),由此可求出r的长.【解答】解:如图,在Rt△ABC,∠C=90°,AC=6,BC=8;根据勾股定理AB==10;四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AF,BD=BE,CE=CF;∴CE=CF=(AC+BC﹣AB);即:r=(6+8﹣10)=2.11.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,那么折痕AB的长为2cm.【考点】翻折变换(折叠问题).【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故答案为:2.12.已知,点P是反比例函数y=图象在第一象限上的一个动点,⊙P的半径为1,当⊙P与坐标轴相交时,点P的横坐标x的取值范围是x>4或0<x<1.【考点】反比例函数图象上点的坐标特征;直线与圆的位置关系.【分析】首先画出比例函数y=图象,观察点P在第一象限变化的情况,因为⊙P的半径为1,所以当0<x<1时,⊙P与y轴相交,当x>2时,⊙P与x轴相交,据此求出答案.【解答】解:如图,当⊙P与坐标轴相交时,若与y轴相交时,根据函数图象得:0<x<1;若与x轴相交时,根据函数图象得:x>4.故答案为:0<x<1或x>4.三、解答题(本大题共有6小题,共30分)13.先化简:(1+)÷,再选择一个恰当的x的值代入求值.【考点】分式的化简求值.【分析】先通分计算括号里面的,再将(x2﹣1)因式分解,然后将除法转化为乘法进行计算.【解答】解:原式=×=×=x+1,当x=6时,原式=6+1=7.14.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+2>0,得:x>﹣2,解不等式+1≥x,得:x≤1,∴不等式组的解集为:﹣2<x≤1.15.已知:线段m、n,(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).【考点】作图-轴对称变换;作图—复杂作图.【分析】(1)画一直线长为m,作三角形的底,再用圆规,以线段m的两端点为圆心,n长为半径画弧,交于点A,连接三点即是三角形.(2)本题答案不唯一,只要是根据轴对称图形的性质画的轴对称图形就可.【解答】解:16.甲、乙、丙、丁四人参加某校招聘教师考试,考试后甲、乙两人去询问成绩.请你根据下面回答对甲、乙两人回答的内容进行分析.(1)列举出这四人的名次排列所有可能出现的不同情况.(2)求甲排在第一名的概率?【考点】列表法与树状图法.【分析】(1)根据对话显然丙排在第四,乙是第二或第三,则对应的甲的名次可能有两种情况.所以共有4种情况.(2)根据概率公式,利用甲排在第一名的情况数:所有可能出现的不同情况即可.【解答】解:(1)列举:①甲、乙、丁、丙;②丁、乙、甲、丙;③甲、丁、乙、丙;④丁、甲、乙、丙;(2)甲排在第一名的概率为=.17.某工厂用A、B、C三台机器加工生产一种产品.对2015年第一季度的生产情况进行统计,图1是三台机器的产量统计图.图2是三台机器产量的比例分布图.(图中有部分信息未给出)(1)利用图1信息,写出B机器的产量,并估计A机器的产量;(2)综合图1和图2信息,求C机器的产量.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图得到B机器的产量,并估计A机器的产量;(2)根据扇形统计图得到C机器的产量的百分比,计算即可.【解答】解:(1)由条形统计图可知,B机器的产量是150件,估计A机器的产量是210件;(2)设C机器的产量为x件,由题意得,=,解得,x=240,答:C机器的产量为240件.四、解答题(本大题共有4小题,共32分)18.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD 的最小值,并求取得最小值时P点的坐标.【考点】一次函数综合题.【分析】(1)将点A、B的坐标代入y=kx+b并计算得k=﹣2,b=4.求出解析式为:y=﹣2x+4;(2)设点C关于点O的对称点为C′,连接C′D交OB于P,则PC=PC′,PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.连接CD,在Rt△DCC′中,由勾股定理求得C′D的值,由OP是△C′CD的中位线而求得点P的坐标.【解答】解:(1)将点A、B的坐标代入y=kx+b得:0=2k+b,4=b,∴k=﹣2,b=4,∴解析式为:y=﹣2x+4;(2)设点C关于点O的对称点为C′,连接C′D交OB于P′,连接P′C,则PC=PC′,∴PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.连接CD,在Rt△DCC′中,C′D==2,即PC′+PD的最小值为2,∵OA、AB的中点分别为C、D,∴CD是△OBA的中位线,∴OP∥CD,CD=OB=2,∵C′O=OC,∴OP是△C′CD的中位线,∴OP=CD=1,∴点P的坐标为(0,1).19.如图,一种某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?【考点】解直角三角形的应用;平行投影.【分析】(1)过点E作EH⊥AB于H,由题意四边形ACEH是矩形,在Rt△BEH 中,根据tan∠BEH=列出方程即可解决问题.(2)①求出h的值即可解决问题,②求出∠ACB的大小即可解决问题.【解答】解:(1)过点E作EH⊥AB于H,由题意四边形ACEH是矩形,∴EH=AC=30,AH=CE=h,∠BEH=α,∴BH=30﹣h,在Rt△BEH中,tan∠BEH=,∴30﹣h=30tanα,∴h=30﹣30tanα.(2)当α=30°时,h=30﹣30×≈12.7,∵12.7÷3=4.2,∴B点的影子落在乙楼的第五层,当B点的影子落在乙楼C处时,甲楼的影子刚好不影响乙楼采光,此时AB=AC=30,△ABC是等腰直角三角形,∴∠ACB=45°,∴=1(小时),∴从此时起1小时后甲楼的影子刚好不影响乙楼采光.20.如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若的长为底面周长的,如图2所示.(1)求⊙O的半径;(2)求这个圆柱形木块的表面积.(结果可保留π和根号)【考点】圆柱的计算;解直角三角形.【分析】(1)根据的长为底面周长的,可将扇形的圆心角求出,再根据弦AD的长可将⊙O的半径求出;(2)圆柱形木块的表面积S=2S圆+S侧,将上下两个圆的面积和侧面的面积求出,相加即可.【解答】解:(1)如图:连接OA,OD,过O作OE⊥AD,垂足为E,∵由已知的长=圆周长,∴扇形OAmD的圆心角为360°×=240°.∠AOD=360°﹣240°=120°.∵OE⊥AD,∴∠AOE=120°=60°,AE=AD.∵AD=24cm,∴AE=12cm.在Rt△AOE中,sin∠AOE=,∴AO==(cm).即⊙O的半径为cm.(2)设圆柱的表面积为S,则S=2S圆+S侧,2S圆=2π×(8)2=384π(cm2),S侧=2π×8×25=400π(cm2),∴S=πcm2答:木块的表面积为πcm2.21.已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD.(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)【考点】等腰梯形的性质;等腰三角形的判定与性质.【分析】(1)根据等腰三角形的判断(等角对等边),通过证明△ABC∽△CAD 得出对应角相等得出△ADC和△BDC都是等腰三角形;(2)由(1)知BD=BC=AC,及AC2=AB•AD,可以求AC的值;(3)利用36°,72°,108°角的特殊关系,设计等腰梯形,满足题意.【解答】(1)证明:∵∠A=36°,AC=BC,∴∠B=∠A=36°,∴∠ACB=180°﹣∠A﹣∠B=108°,∵AC2=AB•AD,∴AC:AB=AD:AC,∵∠A是公共角,∴△ACD∽△ABC,∴∠ACD=∠B=36°,∴AD=CD,∴∠BCD=∠ACB﹣∠ACD=72°,∴∠BDC=180°﹣∠B﹣∠BCD=72°,∴∠BCD=∠BDC,∴BC=BD,即:△ADC和△BDC都是等腰三角形;(2)解:∵△ABC∽△ACD,∴∠ACD=∠B=36°,∴∠BCD=∠A+∠ACD=72°,∠BCD=∠ACB﹣∠ACD=108°﹣36°=72°,∴∠BCD=∠BDC,∴BD=BC,∵AC=BC,∴AC=BC=BD,设AC=x,则BC=BD=x,AD=1﹣x,∵AC2=AB•AD,∴x2=1﹣x,解得:x=或x=(舍去),∴AC的值为.(3)如图.五、解答题(本大题共有1小题,共10分)22.根据如图所示的程序计算.(1)计算x=1时,y值是多少?(2)是否存在输出值y恰好等于输入值x的2倍?如果存在,请求出x的值;如果不存在,请说明理由.(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.【考点】有理数的混合运算;解一元二次方程-公式法.【分析】(1)把x=1代入程序中计算即可确定出y的值;(2)根据题意得到y=2x,由程序判断即可;(3)存在,根据程序确定出x的值,计算即可.【解答】解:(1)把x=1代入程序中得:12×2﹣4=2﹣4=﹣2<0,把x=﹣2代入程序中得:(﹣2)2×2﹣4=8﹣4=4>0,则y=4;(2)当y=2x且y>0时,有2x2﹣4=2x,解得:x=2或x=﹣1(舍去),则x=2;(3)存在,当y=x且y<0时,输入x计算后始终输不出y的值,此时x=2x2﹣4,解得:x=,由y<0,得到x=,则当x=时,输不出y的值.六、解答题(本大题共有1小题,共12分)23.已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴公式为x=﹣.【考点】二次函数综合题.【分析】(1)可在直角三角形BOA中,根据AB的长和∠AOB的度数,求出OA 的长.根据折叠的性质可知:OC=OA,∠COA=60°,过C作x轴的垂线,即可用三角形函数求出C点的坐标;(2)根据(1)求出的A,C点的坐标,用待定系数法即可求出抛物线的解析式;(3)根据等腰梯形的性质,如果过M,P两点分别作底的垂线ME和PQ,那么CE=PQ,可先设出此时P点的坐标,然后表示出M点的坐标,CE就是C点纵坐标与M点纵坐标的差,QD就是P点纵坐标和D点纵坐标的差.由此可得出关于P点横坐标的方程,可求出P点的横坐标,进而可求出P点的坐标.【解答】解:(1)过点C作CH⊥x轴,垂足为H∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2∴OB=4,OA=由折叠知,∠COB=30°,OC=OA=∴∠COH=60°,OH=,CH=3∴C点坐标为(,3);(2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(,0)两点,∴,解得:,∴此抛物线的解析式为:y=﹣x2+2x.解法一:(3)存在.因为的顶点坐标为(,3)所以顶点坐标为点C作MP⊥x轴,垂足为N,设PN=t,因为∠BOA=30°,所以ON=t∴P(t,t)作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E把t代入得:y=﹣3t2+6t∴M(t,﹣3t2+6t),E(,﹣3t2+6t)同理:Q(,t),D(,1)要使四边形CDPM为等腰梯形,只需CE=QD(这时△PQD≌△MEC)即3﹣(﹣3t2+6t)=t﹣1,解得:,t2=1(不合题意,舍去)∴P点坐标为(,)∴存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐为(,);解法二:(3)存在.由(2)可得:=得顶点坐标为(,3),即点C恰好为顶点;设MP交x轴于点N,∵MP∥y轴,CH为抛物线的对称轴∴MP∥CD且CM与DP不平行∴四边形CDPM为梯形若要使四边形CDPM为等腰梯形,只需∠MCD=∠PDC由∠PDC=∠ODH=90°﹣∠DOA=60°,则∠MCD=60°又∵∠BCD=90°﹣∠OCH=60°,∴∠MCD=∠BCD,∴此时点M为抛物线与线段CB所在直线的交点设BC的解析式为y=mx+n由(2)得C(,3)、B(,2)∴解得:∴直线BC的解析式为由得,∴ON=在Rt△OPN中,tan∠PON=得∴P点坐标为(,)∴存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐标为(,).。
数学试卷第1页(共28页)数学试卷第2页(共28页)绝密★启用前江西省2018年中等学校招生考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共18分)一、选择题(本大题共6小题,每小题3分,共18分.每小题给出的四个选项中,只有一项是符合题目要求的)1.2-的绝对值是()A .2-B .2C .12-D .122.计算22()ba a- 的结果为()A .bB .b-C .abD .b a3.如图所示的几何体的左视图为()ABCD4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10%5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A .3个B .4个C .5个D .无数个6.在平面直角坐标系中,分别过点(),,02,0()A m B m +作x 轴的垂线和1l 和2l ,探究直线1l ,直线2l 与双曲线3y x=的关系,下列结论中错误的是()A .两直线中总有一条与双曲线相交B .当1m =时,两直线与双曲线的交点到原点的距离相等C .当20m -<<时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上)7.若分式11x -有意义,则x 的取值范围为.8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为.9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共28页)数学试卷第4页(共28页)头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y两,依题意,可列出方程组为.10.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE EF =,则AB 的长为.11.一元二次方程2420x x +=-的两根为1x ,2x ,则2111242x x x x -+的值为.12.在正方形ABCD 中,6AB =,连接AC ,BD ,P 是正方形边上或对角线上一点,若2PD AP =,则AP 的长为.三、解答题(本大题共11小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)13.(本小题满分6分,每题3分)(1)计算:2(1)(1)(2)a a a +---;(2)解不等式:2132x x --+≥.14.(本小题满分6分)如图,在ABC △中,8AB =,4BC =,6CA =,CD AB ∥,BD 是ABC ∠的平分线,BD 交AC 于点E .求AE 的长.15.(本小题满分6分)如图,在四边形ABCD 中,AB CD ∥,2AB CD =,E 为AB 的中点.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中,画出ABD △的BD 边上的中线;(2)在图2中,若BA BD =,画出ABD △的AD 边上的高.16.(本小题满分6分)2018年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.数学试卷第5页(共28页)数学试卷第6页(共28页)17.(本小题满分6分)如图,反比例函数 ()0ky k x=≠的图象与正比例函数 2y x =的图象相交于()1,A a ,B两点,点C 在第四象限,CA y ∥轴,o90ABC ∠=.(1)求k 的值及点B 的坐标(2)求tan C的值.18.(本小题满分8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间.过程如下.收集数据从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min ):30608150401101301469010060811201407081102010081整理数据按如下分段整理样本数据并补全表格:课外阅读时间(min)x 040x ≤<4080x ≤<80120x ≤<120160x ≤<等级D CB A人数38分析数据补全下列表格中的统计量:平均数中位数众数80得出结论(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B ”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(本小题满分8分)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视图简化示意图,已知轨道120AB cm =,两扇活页门的宽60cm OC OB ==,点B 固定,当点C 在AB 上左右运动时,OC 与OB 的长度不变(所有结果保留小数点后一位).(1)若o 50OBC∠=,求AC 的长;(2)当点C 从点A 向右运动60cm 时,求点O 在此过程中运动的路径长.参考数据:o sin 500.77≈,o cos500.64≈,o tan 50 1.19≈,π取3.14.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________图1图2数学试卷第7页(共28页)数学试卷第8页(共28页)20.(本小题满分8分)如图,在ABC △中,O 为AC 上一点,以点O 为圆心,OC 的半径作圆,与BC 相切于点C ,过点A 作AD BO ⊥交BO 的延长线于点D ,且AOD BAD ∠=∠.(1)求证:AB 为O 的切线;(2)若6BC =,4tan 3ABC ∠=,求AD 的长.21.(本小题满分9分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(本小题满分9分)在菱形ABCD 中,60ABC ∠=︒,点P 是射线BD 上一动点,以AP 为边向右侧作等边APE △,点E 的位置随点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接CE ,BP 与CE 的数量关系是,CE 与AD 的位置关系是;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2图3中的一种情况予以证明或说理).(3)如图4,当点P 在线段BD 的延长线上时,连接BE ,若23AB =,219BE =,求四边形ADPE 的面积.23.(本小题满分12分)小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线23y x bx =-+-经过点()1,0-,则b =,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是;抽象感悟我们定义:对于抛物线()20y ax bx c a =++≠,以y 轴上的点()0,M m 为中心,作该抛物线关于点M 对称的抛物线y ',则我们又称抛物线y '为抛物线y 的“衍生抛物线”,点M 为“衍生中心”.(2)已知抛物线225y x x =--+关于点(0,)m 的衍生抛物线为y ',若这两条抛物线有交点,求m 的取值范围;问题解决(3)已知抛物线22(0)y ax ax b a =+-≠.①若抛物线y 的衍生抛物线为222(0)y bx bx a b '=-+≠,两抛物线有两个交点,且恰好是它们的顶点,求a ,b 的值及衍生中心的坐标;②若抛物线y 关于点2(01)k +,的衍生抛物线为1y ,其顶点为1A ;关于点2(0,2)k +的衍生抛物线为2y ,其顶点为2A ;…;关于点2(0,)k n +的衍生抛物线为n y ,其顶点数学试卷第9页(共28页)数学试卷第10页(共28页)为n A ;…(n 为正整数).求()1n n A A +的长(用含n 的式子表示).江西省2018年中等学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】2-的绝对值是2,故选B .【考点】绝对值的概念2.【答案】A 【解析】2222()b b a a b a a -==,故选A .【考点】分式的运算3.【答案】D【解析】从左面看该几何图,看到的是一个矩形,且看不到的棱用虚线表示,故选D .【考点】几何体的左视图4.【答案】C【解析】A 中,最喜欢足球的人数最多,故错误;B 中,最喜欢羽毛球的人数是最喜欢乒乓球人数的43,故错误;C 中,全班学生总人数为122084650++++=(名),故正确;D 中,最喜欢田径的人数占总数的4100%8%50⨯=,故错误,故选C .【考点】频数分布直方图5.【答案】C【解析】如图所示,正方形ABCD 可以向上、向下、向右以及沿AC 所在直线、沿BD 所在直线平移,且平移前后的两个正方形可组成轴对称图形,故选C .【考点】利用轴对称设计图案,平移的性质6.【答案】D【解析】A 中,因为双曲线3y x=的图象位于第一、三象限,且m 与2m +不全为0,所以直线1l 和2l 中总有一条与双曲线相交,故正确;B 中,当1m =时,直线1l 与双曲线交点为(1,3),直线2l 与双曲线交点为(3,1),到原点的距离,故当1m =时两直线与双曲线的交点到原点的距离相等,故正确;C 中,当20m -<<时,直线2l 与双曲线的交点位于第三象限,在y 轴的左侧,直线2l 与双曲线的交点位于第一象限,在y 轴的右侧,故正确;D 中,反比例函数3y x=的图象是曲线,根据直角三角形中斜边长大于直角边长,故当两直线与双曲线都有交点时,这两交点的最短距离必大于2,故错误,故选D .【考点】反比例函数的图象与性质第Ⅱ卷二.填空题7.【答案】1x ≠【解析】依题意,10x -≠,解得1x ≠.【考点】分式有意义的条件8.【答案】4610⨯【解析】460000610=⨯.【考点】科学记数法9.【答案】5210258x y x y +=⎧⎨+=⎩【解析】由5头牛、2只羊、值金10量可得5210x y +=,由2头牛、5只羊、值金8量可得258x y +=,可列出方程组5210258x y x y +=⎧⎨+=⎩,.数学试卷第11页(共28页)数学试卷第12页(共28页)【考点】二元一次方程组的应用10.【答案】【解析】∵四边形ABCD 为矩形,∴AD BC =,o90D ∠=由旋转的性质可知AB AE =,BC EF =∴3EF AD ==.∵DE EF =∵3DE =.在Rt ADE △中,AE ===∴AB =.【考点】矩形的性质,旋转的性质,勾股定理11.【答案】2【解析】把1x x =代入一元二次方程2420x x -+=中,得211420x x -+=,∴21142x x -=-根据根与系数的关系,得122x x = ,∴2222=-+⨯=原式.【考点】一元二次方程根与系数的关系,代数式求值12.【答案】2,【解析】(1)当点P 在正方形的边上时,①当点P 在AD 边上时,如图1,11233AP AD AB ===;②当点P 在AB 边上时,如图2,设AP x =,则2PD x =,∴2226(2)x x +=解得x =③点P 不可能在BC ,CD上.(2)当点P 在对角线上时,①当点P 在对角线BD 上时(不与点B 重合),如图3,∵2PD OA <,AP OA ≥,∴点P 在BD 上不存在2PD AP =;②当点P 在对角线AC 上时,如图4,设AP x =,则2PD x =,32OP x =-,32OD =在Rt OPD △中,222(32)2)(2)x x +=,解得114262x =<,2142x =-(舍去).综上所述,2AP =,23142-.【考点】正方形的性质、勾股定理、分类讨论思想三、解答题13.【答案】(1)45a -(2)6x ≥【解析】(1)221(44)45a a a a =---+=-原式.(2)去分母,得2226x x --+≥解得6x ≥.【考点】整式的混合运算,一元一次不等式的解法14.【答案】4AE =【解析】∵BD 平分ABC ∠.数学试卷第13页(共28页)数学试卷第14页(共28页)∴ABD CBD ∠=∠∵AB CD ∥,∴ABD D ∠=∠,ABE CDE ~△△.∴CBD D ∠=∠,AB AECD EC =∴BC CD=∵8AB =,6CA =,4CD BC ==,∴846AE AE =-.∴4AE =.【考点】平分线的定义、平分线的性质、相似三角形的判定与性质15.【答案】画法如图所示.(1)AF即为所求(2)BF即为所求【解析】画法如图所示.(1)AF即为所求(2)BF即为所求【考点】考查作图、全等三角形的判定与性质、三角形的重心.16.【答案】(1)不可能,随机,14.(2)解法一:根据题意,可以画出如下的树状图:小悦小悦小惠小悦小悦小艳小倩小艳小艳小艳小悦小悦小惠小惠小惠小倩小倩由树状图可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.解法二:根据题意,可以列出表格如下:小悦小惠小艳小倩小悦小悦、小惠小悦、小艳小悦、小倩小惠小惠、小悦小惠、小艳小惠、小倩数学试卷第15页(共28页)数学试卷第16页(共28页)小艳小艳、小悦小艳、小惠小艳、小倩小倩小倩、小悦小倩、小惠小倩、小艳由上表可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.【解析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)用列表法或树状图法得到所有等可能的结果,再找出符合条件的结果,根据概率公式求解即可。
2018年江西省中考数学仿真模拟试题说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个正确答案,请将正确答案的序号填在题后的括号内)1.32-的相反数是( ) A.23- B.23 C.32D.32-2.下列运算正确的是( )A. 236x x x ⋅= B. 22232x x x -+= C. 236()x x -= D. 221(2)4x x --=-3.下列A 、B 、C 、D 四幅“福牛乐乐”图案中,能通过顺时针旋转180°图案(1)得到的是( )B4.某运动场的面积为3002m ,则它的万分之一的面积大约相当于( )A .课本封面的面积B .课桌桌面的面积C .黑板表面的面积D .教室地面的面积 5.已知一次函数y=kx+b(k 、b 为常数,且k ≠0),x 与y 的部分对应值如下表所示,那么不等式kx+b<0的解集是( )6. 如图是由相同小正方体组成的立体图形,它的主视图为( )7.教室地面的瓷砖如图所示,一把钥匙被藏在某种颜色的一块瓷砖下面,则下列判断正确的是( )A.被藏在白色瓷砖下的概率大 B.被藏在黑色瓷砖下的概率大C.被藏在两种瓷砖下的概率一样大 D.无法确定A .B .C .D .8.若⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-81my nx ny mx 的解,则m,n 的值分别为( )A.m=2,n=1B.m=2,n=3C.m=1,n=8D.m=-2,n=39.将一副三角板按如图所示的位置叠放,则△AOB 与△DOC 的面积之比等于( )A. B. 12 C. 13 D. 1410. 如图,一量角器放置在∠AOB 上,角的一边OA 与量角器交于点C 、D ,且点C 处的度数是20°,点D 处的度数为110°,则∠AOB 的度数是( )A.20°B. 25°C.45°D. 55°二、填空题(本大题共6小题,每小题3分,共18分)11.新华网济南2月24日电 ,据山东省经贸委提供的数据,截至22日,山东省累计销售并已登录信息系统的家电下乡试点产品140.46万台,实现销售收入超过20.53亿元,居全国第一。
2018年江西中考模拟卷(一)时间:120分钟满分:120分题号一二三四五六总分得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.|-2|的值是()A.-2B.2C.-1212D.2.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为()5B.4.64×106A.4.64×107D.4.64×108C.4.64×103.观察下列图形,其中既是轴对称又是中心对称图形的是()4.下列计算正确的是()A.3x2y+5xy=8x3y2B.(x+y)2=x2+y22C.(-2x)÷x=4xD.yx+=1x-yy-x2-2x-1=0的两根分别为x1,x2,则1 +5.已知一元二次方程xx11的值为() x2A.2B.-1C.-12D.-26.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形第6题图第8题图二、填空题(本大题共6小题,每小题3分,共18分)7.计算:-12÷3=________.8.如图,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为________.2=-1,那么(19.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i第1页共9页+i)·(1-i)=________.1.已知某几何体的三视图如图所示,根据图中数据求得该几何为____________. 第10题图第12题图 11.一个样本为1,3,2,2,a ,b ,c ,已知这个样数为3,平均数为这组数据的中位数为________. 12.如图,在平面直角坐标系中,△ABC 为等腰直角三角形,点A(0,2),B(-2,0), 点D 是x 轴上一个动AD 为一直角边在一侧作等腰直角三角形ADE ,∠DAE =90°. 若△A B D 为等腰三角点E 的坐标为__________. 三、(本大题共5小题,每小题6分,共30分) 13.(1)解不等式组: 3x -1≥x +1, x +4<4x -2. (2)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF.求证:△ADF ≌△BCE. 14.先化简,再求值:m2m m - ,请在2,-2,0,3当中选一个合适的数2-4÷m -2mm +2 代入求值.15.为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋,投放,其 中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等共9页可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.16.根据下列条件和要求,仅使用无刻度的直尺画图,并保存(1)如图①,△ABC 中,∠C =90°,在三角形的一边上取一点D ,画一个钝角△DAB ; (2)如图②,△ABC 中,AB =AC ,ED 是△ABC 的中位线,画出△ABC 的BC 边上的高. 17.某市需要新建一批公交车候车厅产品(如图①),产品示意图的 侧面如图②所示,其中支柱DC 长为2.1m ,且支柱DC 垂直于地面DG ,顶棚横梁AE 长为 1.5m ,BC 为镶接柱,镶接柱与支柱的夹角∠BCD =150°,与顶棚横梁的夹角∠ABC =135°, 要求使得横梁一端点E在支柱D C 的延长线上,此量得镶接点B 与点E 的距离为 0.35m(参考数据:2≈1.41,sin15≈°0.26,cos15°≈0.97,tan15≈°0.27,结果精确到0.1m). (1)求EC 的长;(2)求点A 到地面DG 的距离. 第3页共9页四、(本大题共3小题,每小题8分,共24分)18.某中学开展了“手机伴我健康行”主,他们随机抽取部分学生进行“使用手 机目的”和“每周使用手机的时间查,并绘制成如图①,②所示的统计图,已知 “查资料”的40人. 请你根据以上信息解答题: (1)在扇形统计图中,“玩游戏”对________°;(2)补全条形统计图; (3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数. 19.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印 店复印同样的文件,一次复印页数不超过20页时,每页收费0.12元;一次复印页数超过20 页时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x 为非负整数).(1)根据题意,填写下表:一次复印页数(页)5102030⋯ 甲复印店收费(元)0.52⋯ 乙复印店收费(元)0.62.4⋯(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的 函数关系式;(3)当x >70时,顾客在哪家复印店复印花费少第4页共9页k的图象有两个交点A(-1,m)和B,20.如图,一次函数y=-2x+1与反比例函数y=x过点A作AE⊥x轴,垂足为点E.过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°:①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.22.二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.第5页共9页六、(本大题共12分)23.综合与实践【背景阅读】早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我为3∶4∶5国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为9,12,15或32,42,52的三的三角形称为(3,4,5)型三角形.例如:三边长分别角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.【实践操作】如图①,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去A F.第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.【问题解决】(1)请在图②中证明四边形AEFD是正方形;(2)请在图④中判断NF与ND′的数量关系,并加以证明;(3)请在图④中证明△AEN是(3,4,5)型三角形.【探索发现】(4)在不添加字母的情况下,图④中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.共9页第6页参考答案与解析1.B2.C3.D4.C5.D6.D7.-48.60°9.210.(225+252)π11.212.(2,2)或(2,4)或(2,22)或(2,-22)解析:连接E C.∵∠BAC=∠DAE=90°,AB=AC,∴∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=AD=AE,EC,∠ABD=∠ACE=45°.∵∠ACB=45°,∴∠ECD=90°,∴点E在过点C且垂直x轴的直线上,且EC=DB.①当DB=DA时,点D与O重合,则B D=OB=2,此时E点的坐标为(2,2).②当AB=AD时,BD=CE=4,此时E点的坐标为(2,4).③当BD=AB=22时,E点的坐标为(2,22)或(2,-22).故答案为(2,2)或(2,4)或(2,22)或(2,-22).13.(1)解:解不等式3x-1≥x+1,得x≥1.解不等式x+4<4x-2,得x>2,∴不等式组的解集为x>2.(3分)(2)证明:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE.(4分)在△ADF与△BCE中,AD=BC,∠A=∠B,∴△ADF≌△BCE(SAS).(6分)AF=BE,14.解:原式=m2m-(m-2)(m+2)·m-2m+2m=mm-2·m+2m-2mm+2m+2=-(m-2)(m+2)·mm-22=m-2m.(4分)∵m≠±2,0,∴m只能选取3.当m=3m-2时,原式=3.(6分)15.解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为1.(2分)3(2)如图所示:(4分)由树状图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=122=3.(6分) 1816.解:(1)如图①所示.(3分)(2)如图②所示,AF即为B C边上的高.(6分)共9页第7页17.解:(1EC.∵∠ABC =135°,∠BCD =150°,∴∠EBC =45°,∠ECB =30°.过 点E 作EP ⊥BC ,则EP =BE ×sin45°≈0.25m ,CE =2EP ≈0.5m.(2分) (2)过点A 作AF ⊥DG ,过点E 作EM ⊥AF ,∴四边形EDFM 是矩形,∴MG =ED ,∠DEM =90°,∴∠AEM =180°-∠ECB -∠EBC -90°=15°.在Rt △AEM 中,AM = AE ×sin15≈°0.39m ,(4分)∴AF =AM +CE +DC ≈0.39+0.5+2.1≈3.0(m),∴点A 到地面 的距离约是3.0m.(6分)18.解:(1)126(2分)(2)根据题意得抽取学生的总人数为40÷40%=100(人),∴3小时以上的人数为100-(2 +16+18+32)=32(人),补全条形统计图如图所示.(5分)(3)根据题意得1200×32+32 =768(人),则每周使用手机时间在2小时以上(不含2小时)100 的人数约有768人.(8分)19.解:(1)131.23.3(2分)(2)y 1=0.1x(x ≥0);y 2=0.12x (0≤x ≤20), 0.09x +0.6(x >20). (5分)(3)顾客在乙复印店复印花费少.(6分)理由如下:当x >70时,y 1=0.1x ,y 2=0.09x +0.6,∴y 1-y 2=0.1x -(0.09x +0.6)=0.01x -0.6.(6分)∵x >70,∴0.01x -0.6>0.1,∴y 1>y 2,∴ 当x >70时,顾客在乙复印店复印花费少.(8分)20.解:(1)∵一次函数y =-2x +1的图象经过点A(-1,m),∴m =2+1=3,∴A(-1, k 的图象经过A(-1,3),∴k =-1×3=-3.(4分) 3).(2分)∵反比例函数y =x(2)延长A E ,BD 交于点C ,则∠ACB =90°.∵BD ⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2),∴令y =-2,则-2=-2x +1,∴x = 3 2,即B 3 2 ,-2,∴C(-1,-2),∴AC=3-(-2)=5,BC =3 2 -(-1)= 5 2 ,(6分)∴S四边形AEDB =S △ABC -S △CDE = 1 2 AC ·BC - 1 2 CE ·CD = 1 2×5×5121 -4.(8分) ×2×1= 22 21.(1)证明:∵CD 是⊙O 的切线,∴OC ⊥CD.∵AD ⊥CD ,∴AD ∥OC ,∴∠DAC = ∠OCA.∵OC =OA ,∴∠OCA =∠OAC ,∴∠OAC =∠DAC ,∴AC 平分∠DAO.(3分) (2)解:①∵AD ∥OC ,∴∠EOC =∠DAO =105°.∵∠E =30°,∴∠OCE =180°-105° -30°=45°.(5分)②过点O 作OG ⊥CE 于点G ,则CG =FG.∵OC =2,∠OCE =45°,∴CG =OG =2, ∴FG =2.(7分)在Rt △OGE 中,∵∠E =30°,∴GE =OG=6,∴EF =GE -FG =6-tan30°2.(9分)过点(1,-2),得(a+1)(-a)=-2,解得a1=-2,a2 22.解:(1)由函数y1的图象经共9页第8页=1.当a=-2或1时,函数y1化简后y1=x 2-x-2,∴函数y1的表y=x2-x-2.(3分)(2)当y=0时,(x+a)(x-a-1)=0,解得x1=-a,x2=a+1,∴y1的图象与x轴的交点是(-a,),(a+1,).(4分)当y2=ax(-a,0)时,-a 2+b=0,即b=a2;(5分)当y2=ax(a+1,0)时,a 2+a+b=0,即b=-a2-a.(6分)( 3 )由题意知函数y 1的图象的n)关于直线x=12对称.∵函数y1的图象开口向上,所以当m<n时,0<x0<1.(9分23.(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°.由折叠知AE=AD,∠AEF =∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形.∵AE=AD,∴矩形AEFD是正方形.(3分)(2)解:NF=ND′.(4分)证明如下:如图,连接HN.由折叠知∠AD′H=∠D=90°,HF=HD=HD′∴.∠HD′N=90°.∵四边形AEFD是正方形,∴∠EFD=90°.在Rt△HNF和Rt△HND′中,H N=HN,HF=HD′,∴Rt△HNF≌Rt△HND′,∴NF=ND′.(6分)(3)证明:∵四边形AEFD是正方形,∴AE=EF=AD=8cm.设N F=ND′=xcm,由折叠知AD′=AD=8cm,EN=EF-NF=(8-x)cm.在Rt△AEN中,由勾股定理得AN2=AE2+EN2,即(8+x)2=82+(8-x)2,解得x=2,∴AN=10cm,EN=6cm,∴EN∶AE∶AN=6∶8∶10=3∶4∶5,∴△AEN是(3,4,5)型三角形.(9分)(4)解:∵△AEN是(3,4,5)型三角形,∴与△AEN相似的三角形都是(3,4,5)型三角形,故△MFN,△MD′H,△MDA也是(3,4,5)型三角形.(12分)共9页第9页。