【强烈推荐】五年级奥数应用题练习题(附答案)
- 格式:doc
- 大小:21.00 KB
- 文档页数:6
小学五年级奥数方程练习题应用题100道及答案解析题目1:商店有苹果和梨共320 千克,其中苹果是梨的 3 倍,求苹果和梨各有多少千克?设梨有x 千克,则苹果有3x 千克。
x + 3x = 3204x = 320x = 80苹果:3x = 240 千克答案:梨80 千克,苹果240 千克。
题目2:小明买了5 支铅笔和8 本笔记本,一共花了25 元,已知铅笔每支1 元,求笔记本每本多少钱?设笔记本每本x 元。
5×1 + 8x = 255 + 8x = 258x = 20x = 2.5答案:笔记本每本2.5 元。
题目3:学校图书馆的科技书比故事书多120 本,科技书是故事书的 3 倍,两种书各有多少本?设故事书有x 本,则科技书有3x 本。
3x - x = 1202x = 120x = 60科技书:3x = 180 本答案:故事书60 本,科技书180 本。
题目4:果园里桃树和梨树一共有180 棵,桃树的棵数是梨树的 2 倍,桃树和梨树各有多少棵?设梨树有x 棵,则桃树有2x 棵。
x + 2x = 1803x = 180x = 60桃树:2x = 120 棵答案:梨树60 棵,桃树120 棵。
题目5:甲、乙两人年龄之和为35 岁,甲比乙大5 岁,求甲、乙各多少岁?设乙的年龄为x 岁,则甲的年龄为x + 5 岁。
x + (x + 5) = 352x + 5 = 352x = 30x = 15甲:x + 5 = 20 岁答案:甲20 岁,乙15 岁。
题目6:一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达,如果要4 小时到达,每小时需行多少千米?设每小时需行x 千米。
4x = 60×54x = 300x = 75答案:每小时需行75 千米。
题目7:学校买来一批图书,分给五年级120 本,比六年级少分20 本,六年级分了多少本?设六年级分了x 本。
x - 120 = 20x = 140答案:六年级分了140 本。
1.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以 4.5 千米/时的速度行进,另一半时间以 5.5 千米/时的速度行进。
问:甲、乙两班谁将获胜?解:快速行走的路程越长,所用时间越短。
甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
2.轮船从 A 城到 B 城需行 3 天,而从 B 城到 A 城需行 4 天。
从 A 城放一个无动力的木筏,它漂到 B 城需多少天?解:轮船顺流用 3 天,逆流用 4 天,说明轮船在静水中行4- 3= 1(天),等于水流3+ 4= 7(天),即船速是流速的7 倍。
所以轮船顺流行 3 天的路程等于水流3+ 3× 7=24(天)的路程,即木筏从 A 城漂到 B 城需 24天。
3.小红和小强同时从家里出发相向而行。
小红每分走52 米,小强每分走70 米,二人在途中的 A 处相遇。
若小红提前 4 分出发,且速度不变,小强每分走90 米,则两人仍在 A 处相遇。
小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。
也就是说,小强第二次比第一次少走 4 分。
由(70× 4)÷( 90- 70)= 14(分)可知,小强第二次走了14 分,推知第一次走了18 分,两人的家相距(52+ 70)× 18= 2196(米)。
4.小明和小军分别从甲、乙两地同时出发,相向而行。
若两人按原定速度前进,则 4 时相遇;若两人各自都比原定速度多 1 千米/时,则 3 时相遇。
甲、乙两地相距多少千米?解:每时多走 1 千米,两人 3 时共多走 6 千米,这 6 千米相当于两人按原定速度 1 时走的距离。
所以甲、乙两地相距 6× 4= 24(千米)5.甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
1、25除以一个数的2倍,商是3余1,求这个数.[4]2、学校今年绿化面积1800平方米,比去年的绿化面积的2倍还多40平方米,去年绿化面积是多少平方米? [3]3、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台? [3]4、化肥厂用大、小两辆汽车运47吨化肥,大汽车运了8次,小汽车运了6次正好运完,大汽车每次运4吨,小汽车每次运多少吨? [3]5、一匹布长36米,裁了10件大人衣服和8件儿童衣服,每件大人衣服用布2.4米,每件儿童衣服用布多少米?6、甲车每小时行48千米,乙车每小时行56千米,两车从相距12千米的两地同时背向而行,几小时后两车相距272千米? [4]7、饲养场共养4800只鸡,母鸡只数比公鸡只数的1.5倍还多300只,公鸡、母鸡各养了多少只?8、哥哥和弟弟的年龄相加为35岁,哥哥比弟弟大3岁,哥哥和弟弟各多少岁? [4]9、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米?10、小张买苹果用去7.4元,比买2千克橘子多用0.6元,每千克橘子多少元? [4]11、学校图书馆购买的文艺书比科技书多156本,文艺书的本数比科技书的3倍还多12本,文艺书和科技书各买了多少本? [4]12、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本. [4]13、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.[4]14、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.[4]15、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.[5]16、同学们种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?17、电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.[5]19、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?20、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?21、甲、乙两堆煤共100吨,如从甲堆运出10吨给乙堆,这时甲堆煤的质量正好是乙堆煤质量的1.5倍,求甲、乙两堆煤原来各有多少吨?22、甲仓存粮32吨乙仓存粮57吨以后甲仓每天存人4吨,乙仓每天存人9吨,几天后乙仓存粮是甲仓的2倍?23、两根电线同样长短,将第一根剪去2米后,第二根长是第一根的1.8倍,原来两根电线各长多少米? [4]24、一批香蕉,卖掉140千克后,原来香蕉的质量正好是剩下香蕉的5倍,这批香蕉共有多少千克?25、小明去爬山,上山花了45分钟,原路下山花了30分钟,上山每分钟比下山每分钟少走9米,求下山速度.[4]26、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.[4]27、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,乙车先出发2小时后甲车才出发,两车同时到达B地.求A、B两地的距离.[5]28、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.[5]29、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升.[5]30、甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2倍少189千米,乙铁路长比丙铁路少8千米,求甲铁路的长.[5]31、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.[5]32、小明期中考试语文、数学、地理三科平均分为96分,常识分数比语文、数学、地理、常识四科平均分少3分.求常识分数.33、电视机厂装配一批电视机,计划25天完成,如每天多装35台,24天能超额完成60台.求原计划每天装配多少台.34、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.[5] 35、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的‘单价各是每千克多少元? [5]36、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元? [4]37、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.[5]38、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.[5]39、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球? [5]40、学校体育室有长绳和短绳共72根,短绳的根数是长绳的8倍.长绳和短绳各有多少根?41、王大妈卖鸡蛋,上午卖出了12千克,下午卖出了18千克,下午比上午多卖了27.6元.平均每千克鸡蛋卖多少元?42、南京到北京的铁路长1166千米.一列快车从南京开往北京,一列慢车同时从北京开往南京,5.5小时后两车相遇.快车每小时行118千米,慢车每小时行多少千米?(两种方法做)43、一个三角形的面积是2.1平方米,它的高是1.2米,底是多少米?44、师徒俩共同加工一批零件,15天完成任务.师傅每天加工60个零件,完成任务时比徒弟多加工了360个零件.徒弟每天加工多少个零件?45、食堂买来大米和面粉各7袋,共重525千克.大米每袋重50千克,面粉每袋重多少千克?46、玩具厂一星期生产的熊猫玩具比狗熊玩具多360件,熊猫玩具的件数是狗熊玩具的5倍.熊猫玩具和狗熊玩具各生产了多少件?47、李师傅买4双袜子和2双鞋子,一共用去95.2元.已知鞋子每双34元,袜子每双多少元?48、甲乙两站相距900千米,一列货车和一列客车分别同时从甲乙两站相对开出.货车每小时行80千米,客车每小时行120千米,经过多少小时两车在途中相遇?(用两种方法做)49、水果店运来30箱苹果和25箱梨,共重975千克.每箱苹果重20千克,每箱梨重多少千克?50、一个梯形的面积是72.9平方厘米,上底是10.4厘米,下底是5.8厘米,高是多少厘米?。
小学五年级应用题奥数应用题100道(含答案)1. 商店有苹果300 千克,梨200 千克,梨的重量是苹果的几分之几?答案:200÷300 = 2/32. 一条公路长500 米,已经修了200 米,剩下的占全长的几分之几?答案:(500 - 200)÷500 = 3/53. 五年级一班有学生40 人,其中男生25 人,女生占全班人数的几分之几?答案:(40 - 25)÷40 = 3/84. 一本故事书240 页,小明第一天看了全书的1/6,第二天看了全书的3/8,两天一共看了多少页?答案:240×(1/6 + 3/8)= 130(页)5. 学校运来一堆沙子,砌墙用去2/5 吨,修运动场用去3/8 吨,还剩1/10 吨。
这堆沙子原有多少吨?答案:2/5 + 3/8 + 1/10 = 7/8(吨)6. 服装厂计划一个月生产衣服3600 件,上半月完成了4/9,下半月完成的与上半月同样多,这个月实际生产多少件?答案:3600×4/9×2 = 3200(件)7. 一辆汽车从甲地开往乙地,已经行了全程的3/8,离中点还有25 千米,甲乙两地相距多少千米?答案:25÷(1/2 - 3/8)= 200(千米)8. 水果店运来一批水果,其中苹果120 千克,梨比苹果多1/4,梨有多少千克?答案:120×(1 + 1/4)= 150(千克)9. 五年级同学收集树种56 千克,六年级收集的比五年级多4/7,六年级收集树种多少千克?答案:56×(1 + 4/7)= 88(千克)10. 某工厂十月份用水480 吨,比原计划节约了1/9,十月份原计划用水多少吨?答案:480÷(1 - 1/9)= 540(吨)11. 一根绳子长40 米,第一次用去15 米,第二次用去一些后,还剩下这根绳子的1/5,第二次用去多少米?答案:40 - 15 - 40×1/5 = 17(米)12. 一本书有300 页,第一天看了全书的1/5,第二天看了全书的1/6,第三天应从第几页看起?答案:300×(1/5 + 1/6)+ 1 = 111(页)13. 修一条路,第一天修了全长的1/4,第二天修了全长的1/5,第一天比第二天多修20 米,这条路全长多少米?答案:20÷(1/4 - 1/5)= 400(米)14. 食堂运来一批大米,已经吃了600 千克,正好吃了3/4,这批大米一共有多少千克?答案:600÷3/4 = 800(千克)15. 一辆汽车4 小时行了全程的2/5,照这样的速度,行完全程需要几小时?答案:4÷2/5 = 10(小时)16. 有一块长方形的地,长80 米,宽60 米,在这块地的四周每隔5 米种一棵树,一共可以种多少棵树?答案:(80 + 60)×2÷5 = 56(棵)17. 一个圆形花坛的周长是37.68 米,在它的周围铺一条2 米宽的小路,小路的面积是多少平方米?答案:花坛半径:37.68÷3.14÷2 = 6(米),外圆半径:6 + 2 = 8(米),小路面积:3.14×(8²- 6²)= 87.92(平方米)18. 一个正方体的棱长总和是96 厘米,它的表面积是多少平方厘米?答案:棱长:96÷12 = 8(厘米),表面积:8×8×6 = 384(平方厘米)19. 做一个无盖的长方体铁皮水箱,长5 分米,宽4 分米,高3 分米,至少要用多少平方分米的铁皮?答案:5×4 + 5×3×2 + 4×3×2 = 74(平方分米)20. 把一个棱长8 厘米的正方体铁块,锻造成一个长16 厘米,宽4 厘米的长方体铁块,这个长方体铁块的高是多少厘米?答案:8×8×8÷(16×4)= 8(厘米)21. 一个房间的长6 米,宽3.5 米,高3 米,门窗面积是8 平方米。
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
小学数学五年级上册奥数应用题100道(含答案)1. 学校图书馆有科技书180 本,故事书比科技书的2 倍还多30 本,故事书有多少本?答案:180×2 + 30 = 390(本)2. 一辆汽车每小时行驶80 千米,3.5 小时行驶多少千米?答案:80×3.5 = 280(千米)3. 果园里有苹果树250 棵,比梨树的2 倍少50 棵,梨树有多少棵?答案:(250 + 50)÷2 = 150(棵)4. 一块长方形菜地,长18 米,宽12 米,这块菜地的面积是多少平方米?答案:18×12 = 216(平方米)5. 小明买了5 个笔记本,每个笔记本2.5 元,一共花了多少钱?答案:5×2.5 = 12.5(元)6. 服装厂要做650 套服装,已经做了350 套,剩下的要10 天完成,平均每天要做多少套?答案:(650 - 350)÷10 = 30(套)7. 学校买了8 个篮球,每个60 元,又买了20 个排球,每个45 元,买篮球和排球一共花了多少钱?答案:8×60 + 20×45 = 480 + 900 = 1380(元)8. 一辆客车从甲地到乙地,每小时行驶75 千米,4 小时到达,返回时用了5 小时,返回时平均每小时行驶多少千米?答案:75×4÷5 = 60(千米)9. 食堂运来2 吨大米,计划吃20 天,平均每天吃多少千克?答案:2 吨= 2000 千克,2000÷20 = 100(千克)10. 修一条长500 米的路,已经修了150 米,剩下的要5 天修完,平均每天修多少米?答案:(500 - 150)÷5 = 70(米)11. 商店运来120 千克苹果,是运来梨的2 倍,运来梨多少千克?答案:120÷2 = 60(千克)12. 一个梯形的上底是8 厘米,下底是12 厘米,高是6 厘米,这个梯形的面积是多少平方厘米?答案:(8 + 12)×6÷2 = 60(平方厘米)13. 学校买了5 箱乒乓球,每箱12 个,一共花了300 元,每个乒乓球多少元?答案:300÷(5×12)= 5(元)14. 小明家有一块长方形菜地,长20 米,宽15 米,这块菜地的周长是多少米?答案:(20 + 15)×2 = 70(米)15. 妈妈买了3 千克苹果,用了18 元,每千克苹果多少元?答案:18÷3 = 6(元)16. 一辆汽车2.5 小时行驶150 千米,照这样计算,行驶360 千米需要多少小时?答案:360÷(150÷2.5)= 6(小时)17. 有一块平行四边形的麦田,底是250 米,高是84 米,共收小麦14.7 吨。
五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。
顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。
现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。
而甲行走45分钟,乙行走45分钟也能走完一圈。
所以甲行走25分钟的路程相当于乙行走45分钟的路程。
甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。
即乙走一圈的时间是126分钟。
2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。
又因为每次移动12张牌,所以至少移动108÷12=9(次)。
2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
行程问题奥数题及答案1甲,乙两站相距300千米,每30千米设一路标,早上8点开始,每5分钟从甲站发一辆客车开往乙站,车速为60千米每小时,早上9点30分从乙站开出一辆小汽车往甲站,车速每小时100千米,已知小汽车第一次在某两相邻路标之间(不包括路标处)遇见迎面开来的10辆客车,问:从出发到现在为止,小汽车遇见了多少辆客车?行程答案:小汽车出发遇到第一辆客车是在(300-60×1.5)÷(100+60)=21/16小时,小汽车每行一段需要30÷100=3/10小时,此时在(21/16)÷(3/10)=4又3/8段的地方相遇。
遇到第一辆客车后,每隔5÷(100+60)=5/160小时遇到一辆客车,当在端点遇到客车时,每断路只能再遇到9辆车[(3/10)÷(5/160)=9.6],因此过路标少于3/10-9×(5/160)=3/160小时遇到客车时,才能满足条件。
当小汽车行完5段,就刚好在路标处遇到第7辆,因此这段只能遇到9辆,下一次刚好能遇到10辆,所以共遇到了7+9+10=26辆。
行程问题奥数题及答案2A城每隔30分钟有直达班车开往B镇,速度为每小时60千米;小王骑车从A城去B 镇,速度为每小时20千米。
当小王出发30分钟时,正好有一趟班车(这是第一趟)追上并超过了他;当小王到达B镇时,第三趟班车恰好与他同时到达。
A、B间路程为多少千米?行程答案:由于班车速度是小王速度的3倍,所以当第一趟班车追上并超过小王的`那一刻,由于小王已出发30分钟,所以第一趟班车已出发30÷3=10分钟;再过50分钟,第三趟班车出发,此时小王已走了30+50=80分钟,从此刻开始第三趟班车与小王同向而行,这是一个追及问题。
由于班车速度是小王速度的3倍,所以第三趟班车走完全程的时间内小王走了全程的三分之一,所以小王80分钟走了全程的三分之二,AB间路程为:20×80/60÷2/3=40千米。
小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。
问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。
如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。
根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。
因此所求的答案为5人。
2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。
但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。
3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。
如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。
直到两数相同为止。
问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。
五年级应用题数学奥数1. 一块长方形草地,长18 米,宽15 米,在它的四周向外筑一条宽2 米的小路,求小路的面积。
答案:[(18 + 2×2)×(15 + 2×2) - 18×15] = 136(平方米)2. 小明前几次数学测验的平均成绩是84 分,这次要考100 分,才能把平均成绩提高到86 分。
问这是他第几次测验?答案:(100 - 86)÷(86 - 84) = 7(次)3. 甲、乙两车同时从A、B 两地相对开出,4 小时后相遇,甲车再开3 小时到达B 地。
已知甲车每小时比乙车快20 千米,A、B 两地相距多少千米?答案:设乙车速度为x 千米/小时,则甲车速度为(x + 20) 千米/小时。
4(x + x + 20) = 7(x + 20),解得x = 60,A、B 两地相距:7×(60 + 20) = 560(千米)4. 某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?答案:15 + 18 - 10 = 23(人),40 - 23 = 17(人)5. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8 。
这筐苹果有多少个?答案:设这筐苹果有x 个。
(1/5)x + 5 + (1/4)x + 7 + (1/2)[x - ((1/5)x + 5 + (1/4)x + 7)] + (1/8)x = x ,解得x = 406. 有一个长方体,正面和上面两个面积的和为209 平方厘米,并且长、宽、高都是质数。
求这个长方体的体积。
答案:设长、宽、高分别为a、b、c 。
ab + ac = 209 ,a(b + c) = 11×19 ,所以 a = 11 ,b = 2 ,c = 17 ,体积为11×2×17 = 374(立方厘米)7. 有50 位同学前往参观,乘电车前往每人1.2 元,乘小巴前往每人4 元,乘地铁前往每人6 元。
五年级奥数应用题练习题(附答案)解:快速行走的路程越长,所用时间越短。
甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
2. 轮船从A城到B城需行3天,而从B城到A城需行4天。
从A城放一个无动力的木筏,它漂到B城需多少天?解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。
所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。
3. 小红和小强同时从家里出发相向而行。
小红每分走52米,小强每分走70米,二人在途中的A 处相遇。
若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。
小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。
也就是说,小强第二次比第一次少走4分。
由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米)。
4. 小明和小军分别从甲、乙两地同时出发,相向而行。
若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。
甲、乙两地相距多少千米?解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。
所以甲、乙两地相距6×4=24(千米)5. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。
因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
6. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24。
解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。
乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
7一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。
坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为118.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。
问:两人每秒各跑多少米?解:甲乙速度差为10/5=2速度比为(4+2):4=6:4所以甲每秒跑6米,乙每秒跑4米。
9.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。
问:(1) A, B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。
已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?解:设车速为a,小光的速度为b,则小明骑车的速度为3b。
根据追及问题"追及时间×速度差=追及距离",可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍。
小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车11.. 一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。
猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。
所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。
12.. 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。
问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。
13. 辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。
求甲、乙两地的距离。
14. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。
问:甲、乙单独干这件工作各需多少天?解:甲需要(7*3-5)/2=8(天)乙需要(6*7-2*5)/2=16(天15.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?16.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。
这本书共有多少页?解:开始读了3/7 后来总共读了5/833/(5/8-3/7)=33/(11/56)=56*3=168页17.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。
如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成。
17. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。
这批零件共有多少个?解:甲和乙的工作时间比为4:5,所以工作效率比是5:4工作量的比也5:4,把甲做的看作5份,乙做的看作4份那么甲比乙多1份,就是20个。
因此9份就是180个所以这批零件共180个19.挖一条水渠,甲、乙两队合挖要6天完成。
甲队先挖3天,乙队接着解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5所以乙挖4天能挖2/5因此乙1天能挖1/10,即乙单独挖需要10天。
甲单独挖需要1/(1/6-1/10)=15天。
20.有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要2 0天才能完成。
现在只能增加2个人,那么完成这项工程需要多少天?解:将1人1天完成的工作量称为1份。
调来3人与调来8人相比,10天少完成(8-3)×10=5 0(份)。
这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×1 0=100(份)。
调来2人需100÷(2+2)=25(天)。
21. 观察下列各串数的规律,在括号中填入适当的数2,5,11,23,47,(),……解:括号内填95规律:数列里地每一项都等于它前面一项的2倍加122. 在下面的数表中,上、下两行都是等差数列。
上、下对应的两个数字中,大数减小数的差最小是几?解:1000-1=999997-995=992每次减少7,999/7=12 (5)所以下面减上面最小是51333-1=1332 1332/7=190 (2)所以上面减下面最小是2因此这个差最小是2。
23. 如果四位数6□□8能被73整除,那么商是多少?解:估计这个商的十位应该是8,看个位可以知道是6因此这个商是86。
24. 求各位数字都是 7,并能被63整除的最小自然数。
解:63=7*9所以至少要9个7才行(因为各位数字之和必须是9的倍数)25. 1×2×3×…×15能否被 9009整除?解:能。
将9009分解质因数9009=3*3*7*11*1326. 能否用1, 2, 3,, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?解:不能。
因为1+2+3++5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。
27. 有一个自然数,它的最小的两个约数之和是,最大的两个约数之和是100,求这个自然数。
解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商。
最大的约数与第二大28.100以内约数个数最多的自然数有五个,它们分别是几?解:如果恰有一个质因数,那么约数最多的是26=6,有7个约数;如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=8和2×32×5=90,各有12个约数。
所以100以内约数最多的自然数是60,72,8,90和96。
29. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。
解:6,10,1530. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?解:2份;每份有苹果8个,桔子6个,梨5个。
31. 三个连续自然数的最小公倍数是168,求这三个数。
解:6,7,8。
提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。
而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。