小学五年级经典奥数题列方程解应用题
- 格式:doc
- 大小:16.00 KB
- 文档页数:1
小学五年级奥数方程练习题应用题100道及答案解析题目1:商店有苹果和梨共320 千克,其中苹果是梨的 3 倍,求苹果和梨各有多少千克?设梨有x 千克,则苹果有3x 千克。
x + 3x = 3204x = 320x = 80苹果:3x = 240 千克答案:梨80 千克,苹果240 千克。
题目2:小明买了5 支铅笔和8 本笔记本,一共花了25 元,已知铅笔每支1 元,求笔记本每本多少钱?设笔记本每本x 元。
5×1 + 8x = 255 + 8x = 258x = 20x = 2.5答案:笔记本每本2.5 元。
题目3:学校图书馆的科技书比故事书多120 本,科技书是故事书的 3 倍,两种书各有多少本?设故事书有x 本,则科技书有3x 本。
3x - x = 1202x = 120x = 60科技书:3x = 180 本答案:故事书60 本,科技书180 本。
题目4:果园里桃树和梨树一共有180 棵,桃树的棵数是梨树的 2 倍,桃树和梨树各有多少棵?设梨树有x 棵,则桃树有2x 棵。
x + 2x = 1803x = 180x = 60桃树:2x = 120 棵答案:梨树60 棵,桃树120 棵。
题目5:甲、乙两人年龄之和为35 岁,甲比乙大5 岁,求甲、乙各多少岁?设乙的年龄为x 岁,则甲的年龄为x + 5 岁。
x + (x + 5) = 352x + 5 = 352x = 30x = 15甲:x + 5 = 20 岁答案:甲20 岁,乙15 岁。
题目6:一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达,如果要4 小时到达,每小时需行多少千米?设每小时需行x 千米。
4x = 60×54x = 300x = 75答案:每小时需行75 千米。
题目7:学校买来一批图书,分给五年级120 本,比六年级少分20 本,六年级分了多少本?设六年级分了x 本。
x - 120 = 20x = 140答案:六年级分了140 本。
奥数-五年级解方程练习题及解题思路奥数五年级解方程练习题及解题思路在五年级的数学学习中,解方程是一个重要的知识点。
为了帮助同学们更好地掌握解方程,下面为大家准备了一些练习题,并详细讲解解题思路。
一、简单的一元一次方程1、 2x + 5 = 17解题思路:首先,我们要把含有未知数的项留在等式左边,常数项移到等式右边。
所以将 5 移到等式右边得到 2x = 17 5 ,即 2x = 12 。
然后,等式两边同时除以 2 ,得到 x = 6 。
2、 3x 8 = 10解题思路:将-8 移到等式右边,得到 3x = 10 + 8 ,即 3x = 18 。
接着两边同时除以 3 ,解得 x = 6 。
二、含有括号的方程1、 2(x + 3) = 16解题思路:先使用乘法分配律将括号展开,得到 2x + 6 = 16 。
然后将 6 移到等式右边,得到 2x = 16 6 ,即 2x = 10 。
最后两边同时除以 2 ,得出 x = 5 。
2、 3(2x 1) = 15解题思路:同样先展开括号,得到 6x 3 = 15 。
将-3 移到等式右边,得到 6x = 15 + 3 ,即 6x = 18 。
两边同时除以 6 ,解得 x = 3 。
三、稍复杂的方程1、 4x + 3x = 21解题思路:先合并同类项,左边得到7x ,所以方程变为7x =21 。
两边同时除以 7 ,解得 x = 3 。
2、 5x 2x = 18解题思路:合并同类项,左边变为 3x ,即 3x = 18 。
两边同时除以 3 ,得到 x = 6 。
四、需要移项变号的方程1、 20 3x = 8解题思路:首先将-3x 移到等式右边,8 移到等式左边,得到 208 = 3x ,即 12 = 3x 。
然后两边同时除以 3 ,解得 x = 4 。
2、 15 + 4x = 27解题思路:将 4x 移到等式右边,27 移到等式左边,得到 15 27 =-4x ,即-12 =-4x 。
五年级奥数巧解方程练习题1. 题目一:求解方程: 3x + 2 = 8解答:首先将方程中的常数项2移到等式右侧:3x = 8 - 2得到新的方程: 3x = 6接下来,将方程两边的系数3化简为1:x = 6 ÷ 3最终的解为: x = 22. 题目二:求解方程: 5y - 3 = 2y + 7解答:首先将方程中的常数项3移到等式右侧,将2y移到等式左侧: 5y - 2y = 7 + 3得到新的方程: 3y = 10接下来,将方程两边的系数3化简为1:y = 10 ÷ 3最终的解为: y = 3余1/33. 题目三:求解方程组:4x + 5 = 3y3x - 2y = 10解答:将第二个方程的系数变为-6以与第一个方程的y系数5相消: -6(3x - 2y) = -6 × 10得到新的方程: -18x + 12y = -60将上述方程与第一个方程相加可消去y的项:(4x + 5) + (-18x + 12y) = 3y + (-60)化简得: -14x + 12y + 5 = 3y - 60整理后得到: -14x - 3y + 12y = -60 - 5化简得: -14x + 9y = -65解此方程得到第一个未知数x的值:-14x = -65 - 9y接下来,将上述表达式代入第一个方程,解得y的值:4(-65 - 9y) + 5 = 3y化简得: -260 - 36y + 5 = 3y整理后得到: -41y = 255解得: y ≈ -6.220将y的值代入第一个方程得到x的值: 4x + 5 = 3(-6.220)化简得: 4x + 5 = -18.660解得: x ≈ -5.415因此,方程组的解为:x ≈ -5.415y ≈ -6.2204. 题目四:求解方程: 2(x - 3) = 5 - (x + 1)解答:首先,将方程中的括号展开:2x - 6 = 5 - x - 1将方程中的同类项合并:2x + x = 5 + 1 + 6整理后得到: 3x = 12解得: x = 12 ÷ 3最终结果为: x = 45. 题目五:求解方程组:2x + y = 7x + 3y = 12解答:将第一个方程的系数变为-2,与第二个方程的x系数1抵消: -2(2x + y) = -2 × 7得到新的方程: -4x - 2y = -14将上述方程与第二个方程相加可消去y的项:(-4x - 2y) + (x + 3y) = -14 + 12化简得: -3x + y = -2解此方程得到y的值:y = -2 + 3x将y的表达式代入第一个方程,解得x的值:2x + (-2 + 3x) = 7化简得: 2x - 2 + 3x = 7整理后得到: 5x = 9解得: x = 9 ÷ 5最终结果为: x = 1.8将x的值代入第一个方程得到y的值:2(1.8) + y = 7化简得: 3.6 + y = 7解得: y ≈ 3.4因此,方程组的解为:x ≈ 1.8y ≈ 3.4通过以上五道五年级奥数巧解方程练习题的解答,希望能够帮助同学们更好地理解如何解方程,并通过练习提高自己的数学能力。
五年级奥数之列方程解决问题1、已知连续的5个奇数的和是45,求这5个连续奇数分别是多少?设这5个连续奇数的中间那个数为x,则它们分别为x-4,x-2,x,x+2,x+4.根据题意可列出方程:(x-4)+(x-2)+x+(x+2)+(x+4)=45,化简得5x=45,解得x=9.因此这5个连续奇数分别为5,7,9,11,13.2、两个城市相距255千米,甲乙两辆汽车,同时从两个城市出发相向而行。
甲车的速度是42千米/时,乙车的速度是43千米/时,两车几小时后还相距85千米?设两车相遇的时间为t,则根据题意可列出方程:42t+43t=255-85,化简得t=2.因此两车相遇的时间为2小时。
3、两块地一共100公顷,第一块地比第二块地的3倍多20公顷,这两块地各有多少公顷?设第二块地的面积为x公顷,则第一块地的面积为3x+20公顷。
根据题意可列出方程:x+3x+20=100,化简得x=20.因此第一块地的面积为80公顷,第二块地的面积为20公顷。
4、鸡兔同笼,数头有10只,数脚共有24只,鸡兔各有多少只?设鸡的数量为x,兔的数量为y,则根据题意可列出方程:x+y=10,2x+4y=24.化简第二个方程得x+2y=12,两式相减可得y=4,代入第一个方程得x=6.因此鸡有6只,兔有4只。
5、父亲今年的年龄是儿子年龄的4倍,8年后父亲年龄与儿子年龄的和是61,父亲和儿子今年各多少岁?设儿子今年的年龄为x岁,则父亲今年的年龄为4x岁。
根据题意可列出方程:4x+8+x+8=61,化简得x=5.因此儿子今年5岁,父亲今年20岁。
6、有黑白棋子一堆,其中黑子个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取了多少次后,XXX只剩下1个,而XXX还剩下18个?设白子的数量为x,黑子的数量为2x,则根据题意可列出方程:2x-18=4n,x-1=3n,其中n为取的次数。
化简得x=7,因此白子的数量为7个,黑子的数量为14个,取了4次。
五年级奥数知识讲解列方程解应用题(一)千克,根据题意,第二袋剩下的是(x-25)千克,而且第一袋剩下的是第二袋剩下的2倍,因此可以列出等量关系式:2(x-25) = x-18解:根据等量关系式,解方XXX:2x - 50 = x - 18x = 32因此,两袋大米原来各有32千克。
验算:把x=32代入原方程2(x-25) = x-182(32-25) = 32-1814 = 14左边等于右边,因此x=32是原方程的解。
答:两袋大米原来各有32千克。
1.甲乙两个粮仓共有粮食55万千克,甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等。
求甲、乙两仓原来各存粮多少万千克?思路分析:根据题意,甲、乙两仓原来各存粮设为x和55-x万千克。
由于甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等,因此可以列出方程:x-5=55-x-6.解得x=28,因此甲仓原来存粮28万千克,XXX原来存粮27万千克。
2.用5千克含盐20%的盐水,如果要稀释成含盐15%的盐水,需要加多少千克水?思路分析:设需要加的水量为x千克,则原来盐水中盐的重量为5×0.2=1千克,稀释后盐水中盐的重量为5×0.15=0.75千克。
因此,可以列出方程1/(x+5)=0.75/5,解得x=1.67,因此需要加入1.67千克水。
3.有甲、乙两筐苹果,如果从甲筐取10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐比乙筐少了原来总重量的1/5.求甲、乙两筐原来各有多少千克苹果?思路分析:设甲、乙两筐原来各有x和y千克苹果。
根据题意,可以列出方程y+10=x-10和4/5(x+y)=x+y-20.解得x=100,y=80,因此甲筐原来有100千克苹果,乙筐原来有80千克苹果。
1.假设乙筐中苹果重x千克,那么时甲筐中苹果重(x+5)千克。
由于时甲筐比乙筐多余下10-3=7千克,因此有(x+5)-(x)=(7),解得x=2,时甲筐中苹果重7千克,乙筐中苹果重2千克。
小学五年级奥数题列方程解应用题1.解方程求未知数已知一个数加上它的1.8倍等于0.56,求这个数。
设这个数为x,根据题意得到方程x+1.8x=0.56,化简得到2.8x=0.56,解得x=0.2.2.解方程求未知数已知2.9与0.5的积比一个数的5倍少1.65,求这个数。
设这个数为x,根据题意得到方程2.9×0.5=5x-1.65,化简得到x=0.83.3.解方程求未知数已知某数的8倍加上10等于它的10倍减去8,求这个数。
设这个数为x,根据题意得到方程8x+10=10x-8,化简得到2x=-18,解得x=-9.4.解方程求未知数已知XXX有64张画片,XXX送给她12张,这时XXX和XXX的画片数相等。
XXX有画片多少张?设XXX有画片为x,根据题意得到方程x+12=64-x,化简得到x=26.5.解方程求未知数已知甲桶里有油45千克,乙桶里有油24千克,问从甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?设从甲桶里倒x千克的油到乙桶里,根据题意得到方程(45-x)/(24+x)=1.5,化简得到x=9.6.解方程求未知数已知一个三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?设原数为abc,根据题意得到方程100a+10b+c-100b-10c-a=108,化简得到99a-89b=108,由于a和b都是整数,可以得到a=2,b=1,c=5,原数为215.7.解方程求未知数已知某校附小举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?设第一次及格人数为x,不及格人数为y,则根据题意得到方程x=3y+4和x+5=6(y+5),化简得到y=11,x=37,参加竞赛的人数为48.8.解方程求未知数已知10年前XXX的妈妈的年龄是她的7倍,15年后XXX的年龄正好是妈妈年龄的一半,问XXX现在多少岁?设XXX现在的年龄为x,妈妈现在的年龄为y,则根据题意得到方程y-10=7(x-10)和2(y+15)=x+15,化简得到y=55,x=25,XXX现在25岁。
小学五年级奥数题解方程应用题
题目1
某商店里有一些球,其中红球比白球少5个,总共有26个球。
请问这个商店里有多少个红球和白球各有多少个?
解答1
设红球的数量为x,白球的数量为y。
根据题目中的条件可以列出方程组:
x - y = 5 (红球比白球少5个)
x + y = 26 (总共有26个球)
解这个方程组可以得到红球的数量为15个,白球的数量为11个。
题目2
某花店里有一些玫瑰花和牡丹花,其中玫瑰花的束数是牡丹花束数的3倍,总共有20束花。
请问这个花店里有多少束玫瑰花和牡丹花各有多少束?
解答2
设玫瑰花束数为x,牡丹花束数为y。
根据题目中的条件可以列出方程组:
x = 3y (玫瑰花的束数是牡丹花束数的3倍)
x + y = 20 (总共有20束花)
解这个方程组可以得到玫瑰花束数为15束,牡丹花束数为5束。
题目3
某班级里有男生和女生共20人,男生比女生多5人。
请问这个班级里有多少男生和女生各有多少人?
解答3
设男生的人数为x,女生的人数为y。
根据题目中的条件可以列出方程组:
x - y = 5 (男生比女生多5人)
x + y = 20 (男生和女生共20人)
解这个方程组可以得到男生的人数为12人,女生的人数为8人。
小学五年级奥数列方程解应用题练习题小学五年级奥数列方程解应用题练习题篇一例题:一条船从码头顺流而下,再逆流而上,打算在8小时内回到原出发的码头,已知船的静水速度是每小时10千米,水流速度是每小时2千米,问此船最多走出多少千米就必须返回才能在8小时内回到原码头?等量关系式是:①一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米?②甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。
如两人相向而行,经过3分钟两人相遇。
已知乙每分钟行25千米,问AB两地相距多少米?小学五年级奥数列方程解应用题练习题篇二例题:笼中共有鸡兔100只,鸡兔足数共有320条,问鸡兔各有多少只?等量关系式是:①有10分和20分的邮票共18张,总面值为2.80元,问10分和20分邮票各有多少张?②小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨?几天晴天?小学五年级奥数列方程解应用题练习题篇三例题:一个两位数,十位数是个位数字的2倍,如果把十位数上的数字与个位上的数字对调,那么所得的两位数比原两位数小27,原两位数是多少?①一个两位数,个位数是十位上的数的3倍,若把这个十位上的数与个位上的数对调,那么所得的两位数比原来的大54,求原两位数。
②一个两位数,个位上的数字与十位上的数字和为10,如果把十位的数字与个位上数字对调,新数就比原数少36,求原来的两位数?③有一个三位数,其各位数字之和是16,十位数字是个位数字与百位数字之和,若把百位数字与个位数字对调,那么新数比原数在594,求原数?小学五年级奥数列方程解应用题练习题篇四例题:一群公猴,母猴和小猴共38只,每分钟共摘桃266个。
已知一只公猴每分钟摘桃10个,一只母猴每分钟摘桃8个,一只小猴每分钟摘桃5个,已知公猴比母猴少4只,那么这群猴中公猴、母猴、小猴各有多少只?①有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆?②蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只?③学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。
小学五年级奥数方程应用题100道及答案完整版题目1商店有一批苹果,卖出180 千克后,剩下的是卖出的4 倍,商店原来有苹果多少千克?设商店原来有苹果x 千克,则:x - 180 = 4×180,解得x = 900 千克。
题目2小明和小红共有邮票100 张,如果小明给小红10 张,两人的邮票就一样多,小明和小红原来各有多少张邮票?设小明原来有x 张邮票,小红原来有y 张邮票,则:x + y = 100,x - 10 = y + 10,解得x = 60,y = 40。
题目3果园里有苹果树和梨树共360 棵,苹果树的棵数是梨树的 3 倍,苹果树和梨树各有多少棵?设梨树有x 棵,苹果树有3x 棵,则:x + 3x = 360,解得x = 90,3x = 270。
题目4学校买了一批篮球和足球,篮球的个数是足球的2 倍,篮球比足球多18 个,篮球和足球各有多少个?设足球有x 个,篮球有2x 个,则:2x - x = 18,解得x = 18,2x = 36。
题目5甲乙两车同时从相距480 千米的两地相对而行,甲车每小时行45 千米,5 小时后两车相遇,乙车每小时行多少千米?设乙车每小时行x 千米,则:(45 + x)×5 = 480,解得x = 51。
题目6书架上有两层书,上层书的本数是下层的3 倍,如果从上层拿60 本到下层,两层书的本数就一样多,上下层原来各有多少本书?设下层原来有x 本书,上层原来有3x 本书,则:3x - 60 = x + 60,解得x = 60,3x = 180。
题目7鸡兔同笼,共有头30 个,脚86 只,鸡和兔各有多少只?设鸡有x 只,兔有y 只,则:x + y = 30,2x + 4y = 86,解得x = 17,y = 13。
题目8妈妈买了5 千克苹果和3 千克香蕉,一共花了40 元,苹果每千克6 元,香蕉每千克多少元?设香蕉每千克x 元,则:5×6 + 3x = 40,解得x = 10/3 元。
小学五年级奥数题列方程解应用题【三篇】【第一篇】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。
问:胶鞋有多少双?分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。
设胶鞋有x双,则布鞋有(46-x)双。
胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。
解:设有胶鞋x双,则有布鞋(46-x)双。
7.5x-5.9(46-x)=10,7.5x-271.4+5.9x=10,13.4x=281.4,x=21。
答:胶鞋有21双。
【第二篇】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。
问:最初有多少个女生?分析与解:设最初有x个女生,则男生最初有(x-10)×2个。
根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程x-10=[(x-10)×2-9]×5,x-10=(2x-29)×5,x-10=10x-145,9x=135,x=15(个)。
【第三篇】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。
如果一个人带150千克的行李,除免费部分外,应另付行李费8元。
求每人可免费携带的行李重量。
分析与解:设每人可免费携带x千克行李。
一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。
根据超重行李每千克应付的钱数,可列方程4÷(150-3x)=8÷(150-x),4×(150-x)=8×(150-3x),600-4x=1200-24x,20x=600,x=30(千克)。
五年级奥数题:列方程解应用题例1:笼中共有鸡兔100只,鸡兔足数共有320条,问鸡兔各有多少只?等量关系式是:①有10分和20分的邮票共18张,总面值为2.80元,问10分和20分邮票各有多少张?②小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨?几天晴天?例2:已知鸡比兔多13只,鸡的脚比兔脚多16条,问鸡兔各有多少只?等量关系式是:①五年一班有52人做手工,男生每人做3件,女生每人做2件,已知男生比女生多做36件,求五年一班男女生各有多少人?②学校组织暑假旅游,一共用了10辆车,大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐了520人,问大小客车各几辆?例3:一条船从码头顺流而下,再逆流而上,打算在8小时内回到原出发的码头,已知船的静水速度是每小时10千米,水流速度是每小时2千米,问此船最多走出多少千米就必须返回才能在8小时内回到原码头?等量关系式是:①一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米?②甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。
如两人相向而行,经过3分钟两人相遇。
已知乙每分钟行25千米,问AB两地相距多少米?例4:一群公猴,母猴和小猴共38只,每分钟共摘桃266个。
已知一只公猴每分钟摘桃10个,一只母猴每分钟摘桃8个,一只小猴每分钟摘桃5个,已知公猴比母猴少4只,那么这群猴中公猴、母猴、小猴各有多少只?①有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆?②蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只?③学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩学五年级奥数列⽅程解应⽤题(三篇)》,希望帮助到您。
⼩学五年级奥数列⽅程解应⽤题篇⼀ 1、共有1428个球,每5个装⼀筒,装完后还剩3个,⼀共装了多少筒? 2、故宫的⾯积是72万平⽅⽶,⽐天安门⼴场⾯积的2倍少16万平⽅⽶。
天安门⼴场的⾯积多少万平⽅⽶? 3、宁夏的同⼼县是⼀个“⼲渴”的地区,年平均蒸发量是2325mm,⽐年平均降⽔量的8倍还多109mm,同⼼县的年平均降⽔量多少毫⽶? 4、猎豹是世界上跑得最快的动物,能达到每⼩时110km,⽐⼤象的2倍还多30km。
⼤象最快能达到每⼩时多少千⽶? 5、世界上的洲是亚洲,⾯积是4400万平⽅千⽶,⽐⼤洋洲⾯积的4倍还多812万平⽅千⽶。
⼤洋洲的⾯积是多少万平⽅千⽶? 6、⼤楼⾼29.2⽶,⼀楼准备开商店,层⾼4⽶,上⾯9层是住宅。
住宅每层⾼多少⽶? 7、太阳系的九⼤⾏星中,离太阳最近的是⽔星。
地球绕太阳⼀周是365天,⽐⽔星绕太阳⼀周所⽤时间的4倍还多13天,⽔星绕太阳⼀周是多少天? 8、地球的表⾯积为5。
1亿平⽅千⽶,其中,海洋⾯积约为陆地⾯积的2.4倍。
地球上的海洋⾯积和陆地⾯积分别是多少亿平⽅千⽶? 9、6个易拉缺罐,9个饮料瓶,每个的价钱都⼀样,⼀共是1.5元。
每个多少钱? 10、两个相邻⾃然数的和是97,这两个⾃然分别是多少?⼩学五年级奥数列⽅程解应⽤题篇⼆ 1、数学练习共举⾏了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次? 2、⼀个整数除以2余1,⽤所得的商除以5余4,再⽤所得的商除以6余1。
⽤这个整数除以60,余数是多少? 3、少先队员在校园⾥栽的苹果树苗是梨树苗的2倍。
如果每⼈栽3棵梨树苗,则余2棵;如果每⼈栽7棵苹果树苗,则少6棵。
五年级简易方程奥数题一、简易方程奥数题。
1. 已知3x + 5 = 20,求x的值。
- 解析:方程3x+5 = 20,我们要使3x单独在等式一边。
根据等式的性质,等式两边同时减去5,得到3x+5 - 5=20 - 5,即3x = 15。
然后等式两边同时除以3,3x÷3=15÷3,解得x = 5。
2. 某数的4倍加上8等于32,设这个数为x,列方程并求解。
- 解析:根据题意可列方程4x + 8=32。
先在等式两边同时减去8,得到4x+8 - 8=32 - 8,即4x = 24。
再在等式两边同时除以4,4x÷4 = 24÷4,解得x = 6。
3. 2x-3=9,求x的值。
- 解析:方程2x - 3=9,等式两边同时加上3,得到2x-3 + 3=9+3,即2x = 12。
然后等式两边同时除以2,2x÷2=12÷2,解得x = 6。
4. 一个数的3倍比它的5倍少10,设这个数为x,列方程求解。
- 解析:根据题意列方程5x-3x = 10。
化简方程左边得2x = 10,等式两边同时除以2,2x÷2=10÷2,解得x = 5。
5. 5(x - 2)=30,求x的值。
- 解析:等式两边同时除以5,得到5(x - 2)÷5=30÷5,即x - 2 = 6。
然后等式两边同时加上2,x-2+2 = 6 + 2,解得x = 8。
6. 已知3(x+1)=18,求x的值。
- 解析:先等式两边同时除以3,得到3(x + 1)÷3=18÷3,即x+1 = 6。
再等式两边同时减去1,x + 1-1=6 - 1,解得x = 5。
7. 某数的6倍减去9等于这个数的3倍加上6,设这个数为x,列方程求解。
- 解析:根据题意列方程6x-9 = 3x+6。
等式两边同时减去3x,得到6x-3x-9 = 3x - 3x+6,即3x-9 = 6。
五年级奥数:列方程解应用题(二套)目录:五年级奥数:列方程解应用题一五年级小数乘法计算与应用题二五年级奥数:列方程解应用题一列方程解应用题是小学数学的一项重要内容,是一种不同于算术解法的新的解题方法.传统的算术方法,要求用应用题里给出的已知条件,通过四则运算,逐步求出未知量.而列方程解应用题是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值.它的优点在于可以使未知数直接参加运算.列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程.而找出等量关系,又在于熟练运用数量之间的各种已知条件.掌握了这两点,就能正确地列出方程.列方程解应用题的一般步骤是:1.弄清题材意,找出未知数,并用x表示;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案.例题与方法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数.例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷.这两块地各有多少公顷?例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人.三个班各有多少人?例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍.求原来的被除数和除数.练习与思考:1.列方程解应用题,有时要求的未知数有两个或两个以上,我们必须视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数.2.篮球、足球、排球各1个,平均每个36元.篮球比排球贵10元,足球比排球贵8元.每个排球多少元?3.一次数学竞赛有10道题,评分规定对一道题得10分,错一题倒扣2分.小明回答了全部10道题,结果只得了76分,他答对了几道题?4.将自然数1—100排列如下表:在这个表里,用长方形框出的二行六个数(图中长方形框仅为示意),如果框起来的六个数的和为432,问:这六个数中最小的数是几?5.拉萨路小学图书馆一个书架上有上、下两层,一共有245本书.上层每天借出15本,下层每天借出10本,3天后,上、下两层剩下图书的本数一样多.上、下两层原来各有图书多少本?6.甲、乙、丙三个数的和是166,已知甲数除以乙数,乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?7.玲玲今年11岁,爷爷今年74岁.再过几年,爷爷的年龄是玲玲年龄的4倍?8.甲、乙两个养鸡专业户,一共养鸡3000只.乙养鸡专业户卖掉800只鸡后,甲养鸡专业户养鸡的只数正好是乙养鸡专业户剩下的3倍.甲、乙两个养鸡专业户原来各养鸡多少只?列方程解应用题(二)这一讲我们继续学习列方程解应用题.列方程解应用题,关键是掌握分析问题的方法,对应用题中数量关系分析得越深刻,所列的方程就越优化,解答起来就越方便.例题与方法:例1.六(1)班同学合买一件礼物送给母校留作纪念.如果每人出6元,则多48元;如果每人出4.5元,则少27元.求六(1)班学生人数.例2.五老村小学体育器材室里的足球个数是排球的2倍.体育活动课上,每班借7个足球,5个排球,排球借完时,还有足球72个.体育器材室里原有足球、排球各多少个?例3.甲、乙、丙、丁四人共做零件325个.如果甲多做10个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么,四个人做的零件数恰好相等.问:丁做了多少个?例4.如右图,长方的长为12厘米,宽为5厘米.阴影部分甲的面积比乙的面积大15平方厘米.求ED的长.练习与思考:1.妈妈买回一箱库尔勒香梨,按计划天数,如果每天吃4个,则多出24个香梨;如果每天吃6个,则又少4个香梨.问:计划吃多少天?妈妈买回香梨多2.一架飞机所带的燃料最多可以用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可以飞1200千米.这架飞机最多飞出多少千米,就需要往回飞?3.某商店库存的花布比白布的2倍多20米每天卖出30米白布和40米花布,几天以后,白布全部卖完,而花布还剩下140米.原来库存这两种布共多少米?4.一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半.这条大鲨鱼全长是多少米?5.甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,途中丙与乙相遇2分后又遇到甲.如果每分甲行50米,乙行60米,丙行70米,问:乙比甲早多少分到西镇?6.供销社张叔叔买回一批酒精,放在甲、乙两个桶里,两个桶都未装满.如果把甲酒精倒入乙桶,乙桶装满后,甲桶还剩下10升;如果把乙桶酒精全部倒入甲桶,甲桶还能再盛20升.已知甲桶容量是乙桶的2.5倍,张叔叔一共买回多少7.一个两位数十位止的数字比个位上的数字扩大4倍,个位上的数字减去2,那么,所得的两位数比原来大58.求原来的两位数.8.如右图,正方形ABCD的边长是8厘米,三角形ADF的面积比三角形CEF的面积小6平方厘米.求CE的长.五年级小数乘法计算与应用题二*知识点*小数乘法计算原则:①先按整数乘法算出积②看因数一共有几位小数,再在积上点上小数点.③在乘法中,因数的小数点移动的位数会等量作用在积上.一、积的变化规律:1、根据29×36=1044,很快写出下列各题的积.(1)29×0.36= (2)2.9×36= (3)0.29×360= (4)290X0.036=2、根据1.2×3.5=4.2写出四道不同的算式.( )×( )=4.2 ( )×( )=4.2 ( )×( )=4.2 ( )×( )=4.2 3、计算(1)60000.0530000.0020012个个⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅= (2)1301500002240000.0个个⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅ =二、分段计算:1、做一批零件,师傅每小时可以做12个,单独完成需要2.5小时,这批零件共有多少个?如果由徒弟单独做,每小时完成3个,用4.5小时能完成任务吗?2、五(1)班45人合影,每4张照片收费28.5元,另外再加印是每张1.6元,全班每人要1张,一共需要多少钱?3、某市打固定电话每次前3分钟收费0.16元,超过3分钟每分钟收费0.08元(不足1分钟按1分钟计算).张老师一次通话时间是7分52秒,她这一次通话的费用是多少?4、李叔叔要去18千米外的城里办事,他所乘坐的出租车4千米以内收费10元,超过4千米后,每千米加收1.5元,请你计算李叔叔往返所花的租车费.三、行程问题:1、小恒和小丽在同一所学校上学.小恒早上骑自行车以每小时4.5千米的速度去学校,经过0.25小时到达;小丽乘坐公共汽车以每小时60千米的速度去学校,经过0.03小时到达,小恒和小丽谁的家离学校近些?2、AB两城市相距400千米,小李、小王两人分别从A、B两城市同时相向驾车出发,小李开的车每小时行52.4千米,小王开的车每小时行46.8千米,3.5小时后两车相距多少千米?3、两辆车同时从甲乙两地相对开出,4.5小时后相遇.慢车每小时行60千米,快车的速度是慢车的1.4倍.甲乙两地相距多少千米?4、市政府修一条公路,原计划每天修0.55千米,但实际每天比原计划多修0.08千米,15天后还剩4.6千米,这条路长多少千米?5、两辆客车从东西湖同时出发,甲车每小时行65.9千米,乙车每小时行58.7千米,出发5.5小时后,两车相距多远?*家庭作业*1、根据203×24=4872在括号里填上适当的数.()×()=48.72 ()×()=487.2()×()=4.872 ()×()=0.48722、五(2)班26人合影,每3张照片收费12.5元,另外再加印是每张1.5元,全班每人要1张,一共需要多少钱?3、金银湖区打固定电话每次前5分钟收费0.85元,超过5分钟每分钟收费0.12元(不足1分钟按1分钟计算).彭老师一次通话时间是6分12秒,他这一次通话的费用是多少?4、凌云小学修校外的公路,原计划每天修0.48米,但实际每天比原计划少修0.03米,80天后还剩20.7米,这条路长多少米?5、小战和小胜比赛游泳,两人同时开始,小战每秒游2.6米,小胜每秒游2.4米,出发13秒后,两人相距多远?6、甲乙两城市相距320千米,小樱、小轩两人分别从甲乙两城市同时相向驾车出发,小樱开的车每小时行24.4千米,小轩开的车每小时行26.8千米,4.5小时后两车相距多少千米?判断题(1)小数乘法的意义与整数乘法的意义完全相同.(2)1.25×0.4的积是三位小数.(3)一个数乘小数,所得的积比这个数小.(4)两个小数相乘,积比1小.(5)两个小数的乘积一定比这两个数的和大.(6)0.5×6和6×0.5的结果相同,但意义不同.(7)积大于第一个因数,第二个因数一定大于1.(8)一个自然数与1.01相乘,结果比这个数要大.(9)一个因数扩大10倍,另一个因数扩大100倍,积就扩大110倍.(10)A×00.1=A÷100.(11)积的小数位数是4位,那么两个因数小数位数加起来一定也是4位.(12)50乘0.7的积与50个0.7的和相等.(13)3.56×1.01>3.56×0.999.(14)把一个数乘0.1,也就是把这个数缩小到它的101. (15)两个数的积不是小数,所以这两个数一定都不是小数.(16)一个小数的16.5倍一定大于这个小数.(1)取近似数是5.35的三位小数有10个.(2)保留一位小数,是精确到个位.(3)凡是小数都比1小.(4)在表示近似数时,10.0可以写成10.(5)6.995用四舍五入法精确到百分位是7.00.(6)一个数乘9.9,所得的积一定比这个数大.(7)用四舍五入法取近似数,当得数精确到十位时,表示保留一位小数.(8)2.8和2.80的大小相等,精确度也一样.(9)近似数是两位的小数一定比近似数是一位的小数大.。
奥数思维拓展:列方程解应用题1.由于教育水平的差异,新学期开学,相邻的甲、乙两校入学新生人数相差较大。
甲校人数比乙校人数的3倍多30人,而乙校的人数比甲校的3倍少730人。
甲校有新生多少人?2.李同学计划用35元买每支2元、3元、4元三种不同价格的圆珠笔,每种至少买1支。
她最多能买多少支,最少能买多少支?3.国庆期间,山西的特大暴雨,牵动了全国人民的心。
山西暴雨引发省内37条河流几乎同时发生洪水,接踵而至的是山体滑坡、路面冲毁、屋舍农田被淹。
解放军某部紧急调派四支队伍参加救灾,从第一队抽调一半人支援第二队,抽调35人支援第三队,又抽调剩下的一半支援第四队,后来又调进8人,这时第一队还有30人,第一队原来有多少人?4.小春读一本小说,如果每天读35页,则读完全书比规定日期迟到一天;如果他每天读39页,最后一天要读多少页才能按日期读完?5.两条公路成十字交叉,甲从十字路口南1200米处向北直行,乙从十字路口处向东直行.甲、乙同时出发10分后,两人与十字路口的距离相等,出发后100分,两人与十字路口的距离再次相等,此时他们距十字路口多少米?6.甲、乙两堆煤共重180千克,甲堆比乙堆的4倍少20千克,甲、乙两堆煤各重多少千克?7.有面值分别为拾元、伍元、贰元的车票27 张,共108 元,拾元的张数比伍元的张数少7 张,那么,三种面值的车票各有多少张?8.甲、乙两组加工一批零件,甲组每天比乙组多加工100 个,中途乙组因事停工了5 天,20 天后,甲加工的零件个数正好是乙加工的2 倍,这时,两组各加工零件多少个?9.学生共植杉树苗与杨树苗100 棵,每小组分杉树苗6 棵,杨树苗8 棵,最后杉树苗正好分完,杨树苗还剩下 2 棵。
原来杉树苗与杨树苗各有多少棵?10.修一条公路,未修的长度是已修长度的4 倍。
如果再修200m,未修的长度就是已修长度的2 倍。
这条公路长多少米?11.箱子里有红、白两种玻璃球,红球数是白球数的3 倍多2 个。
小学五年级奥数测试题(附答案)A1.把393个小皮球分成四份,第一份比第二份多12个,比第三份多8个,比第四份多23个。
求每份各有多少个?2.有A、B两只货轮,原来A轮装载的货物重量是B轮的5倍,现在A轮再装载400吨货物,B轮再装载800吨,这时A 轮的装载量是B轮的3倍。
求现在两只货轮各装载多少吨?3.某农场共栽桃树、梨树7302棵,已知梨树比桃树的一半多9棵。
求桃树和梨树各多少棵?4.有兄弟二人,哥哥的年龄是弟弟的5倍,5年后哥哥的年龄是弟弟的3倍。
求两人今年各多少岁?5.一串珠子共7粒,总价1998元。
从一端起,每靠中间一粒珠子比外面一粒珠子贵10元,到中间为止;从另一端起,每靠中间一粒珠子比外面一粒贵14元,到中间的一粒珠子价值最高。
问最中间一粒珠子价值是多少元?6.小明有48支铅笔,小刚有36支铅笔,若每次小明给小刚8支,同时小刚再还给小明4支,问经过多少次这样的交换后,小刚的铅笔数是小明的2倍?7.一支钢笔比一支圆珠笔贵1元4角4分,3支圆珠笔的价钱恰好等于2支钢笔的价钱,这两种笔的单价各是多少元?8.78只鸡在田里捉青虫吃,共吃掉138条青虫,已知每只公鸡吃4条青虫,每只母鸡吃3条害虫,两只小鸡吃1条害虫,母鸡比公鸡多18只。
问这群鸡中公鸡、母鸡、小鸡各有多少只?9.把275米长的电线剪成45根,一部分每根长7米,另一部分每根长5米。
问两种电线各有多少根?10.商店购进一批皮球每只成本1。
50元,出售时每只售价2。
00元。
当商店卖剩皮球20只时,成本已经全部收回,并且盈利50元。
问商店原购进皮球多少只?11.面包每只重200克,成人每人发两个面包,小孩每两人全发一个面包,现在有81人,共发掉面包15600克。
问成人、小孩各有多少人?12.甲、乙两个车间共有94个工人,每天共生产1998把椅子。
由于设备和技术的不同,甲车间平均每个工人每天只能生产15把椅子,而乙车间平均每个工人每天可以生产43把椅子,哪么甲车间每天生产的数量比乙车间多多少?(1998年竞赛预赛)B1.幼儿园将一筐苹果分给小朋友,如果大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个。
小学五年级经典奥数题:列方程解应用
题
1、有10分和20分的邮票共18张,总面值为元,问10分和20分邮票各有多少张
2、小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨几天晴天
3、五年一班有52人做手工,男生每人做3件,女生每人做2件,已知男生比女生多做36件,求五年一班男女生各有多少人
4、学校组织暑假旅游,一共用了10辆车,大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐了520人,问大小客车各几辆
5、一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米
6、甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。
如两人相向而行,经过3分钟两人相遇。
已知乙每分钟行25千米,问AB两地相距多少米
7、有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆
、
8、蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只
9、学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔元,每支圆珠笔元,每支钢笔元。
三种笔各值多少元
10、一个两位数,个位数是十位上的数的3倍,若把这个十位上的数与个位上的数对调,那么所得的两位数比原来的大54,求原两位数。
11、一个两位数,个位上的数字与十位上的数字和为10,如果把十位的数字与个位上数字对调,新数就比原数少36,求原来的两位数
12、有一个三位数,其各位数字之和是16,十位数字是个位数字与百位数字之和,若把百位数字与个位数字对调,那么新数比原数在594,求原数。