基础物理实验菲涅尔双棱镜概要
- 格式:ppt
- 大小:300.50 KB
- 文档页数:19
菲涅尔双棱镜实验报告一、实验目的本实验旨在通过菲涅尔双棱镜实验,观察光的干涉现象,测量光波波长,并加深对光的波动性的理解。
二、实验原理菲涅尔双棱镜是由两个折射角很小的直角棱镜底边相接而成。
当一束单色平行光垂直照射在双棱镜的棱脊上时,经双棱镜折射后,其折射光可视为由两个虚光源发出的相干光。
这两个虚光源发出的光在空间相遇,会产生干涉条纹。
根据光的干涉原理,相邻两亮条纹或暗条纹之间的距离与光波波长、双棱镜到观察屏的距离以及两虚光源之间的距离有关。
通过测量条纹间距、双棱镜到观察屏的距离以及两虚光源之间的距离,就可以计算出光波波长。
三、实验仪器钠光灯、菲涅尔双棱镜、凸透镜、测微目镜、光具座等。
四、实验步骤1、调节光具座上各元件,使其共轴。
将钠光灯、双棱镜、凸透镜和测微目镜依次放置在光具座上,调节它们的高度和位置,使它们的中心大致在同一水平轴线上。
2、调整钠光灯的位置,使其发出的平行光垂直照射在双棱镜的棱脊上。
3、移动凸透镜,使通过双棱镜折射后的光线在测微目镜中形成清晰的像。
4、调节测微目镜,使其十字叉丝清晰,并使干涉条纹清晰可见。
5、测量条纹间距。
通过测微目镜测量相邻十条亮条纹或暗条纹之间的距离,多次测量取平均值。
6、测量双棱镜到测微目镜的距离。
使用直尺测量双棱镜到测微目镜的距离,同样多次测量取平均值。
7、测量两虚光源之间的距离。
利用凸透镜成像法测量两虚光源之间的距离。
五、实验数据及处理1、条纹间距的测量测量次数 1:_____mm测量次数 2:_____mm测量次数 3:_____mm平均值:_____mm2、双棱镜到测微目镜的距离的测量测量次数 1:_____cm测量次数 2:_____cm测量次数 3:_____cm平均值:_____cm3、两虚光源之间的距离的测量测量次数 1:_____mm测量次数 2:_____mm测量次数 3:_____mm平均值:_____mm根据实验原理,光波波长的计算公式为:\\lambda =\frac{d \times \Delta x}{D}\其中,\(\lambda\)为光波波长,\(d\)为两虚光源之间的距离,\(\Delta x\)为条纹间距,\(D\)为双棱镜到测微目镜的距离。
用菲涅耳双棱镜测量光的波长唐薇 39011301摘要:利用菲涅耳双棱镜进行干涉实验,当双棱镜与屏的位置确定后,干涉条纹的间距△x与光源的波长λ成正比,利用这个知识能测量出单色光的波长。
本实验报告先介绍了两束光波干涉的必要条件,然后对基本原理和实验仪器进行介绍,为理解实验原理提供理论基础,最后介绍本实验的步骤并进行了数据处理,从而得出实验结果,最后讨论,对实验误差进行分析,对实验方法等提出改进意见等。
两束光波产生干涉的必要条件是:1.频率相同2.振动方向相同3.位相差恒定尽管干涉现象是多种多样的,但为满足上述相干条件,总是把由同一光源发出的光分为两束或两束以上的相干光,使它们各经不同的路径后再次相遇而产生干涉。
产生相干光的方式有两种:分波阵面法和分振幅法。
本次的菲涅耳双棱镜干涉属于分波阵面法。
一、实验目的1、验证光的波动性,了解分波阵面法获得相干光的原理;2、通过用菲涅耳双棱镜对钠灯波长的测量,掌握光学测量的一些基本技巧,培养动手能力。
二、实验原理菲涅耳双棱镜(简称双棱镜)实际上是一个顶角极大的等腰三棱镜,如图1所示。
它可看成由两个楔角很小的直角三棱镜所组成,故名双棱镜。
当一个单色缝光源垂直入射时,通过上半个棱镜的光束向下偏折,通过下半个棱镜的光束向上偏折,相当于形成S′1和S′2两个虚光源。
与杨氏实验中的两个小孔形成的干涉一样,把观察屏放在两光束的交叠区,就可看到干涉条纹。
其中,d是两虚光源的间距,D 是光源到观察屏的距离,λ是光的波长。
用测微目镜的分划板作为观察屏,就可直接从该测微目镜中读出条纹间距△x 值,D 为几十厘米,可直接量出,因而只要设法测出d,即可从上式算出光的波长λ,即△x=D λ/d , λ =△xd/D (1)测量d的方法很多,其中之一是“二次成像法”,如图2所示,即在双棱镜与测微目镜之间加入一个焦距为f 的凸透镜L ,当D >4f 时,可移动透镜L 而在测微目镜中看到两虚光源的缩小像或放大像。
菲涅耳双棱镜一、引言关于光究竟是波还是粒子曾经在历史上引起了很长时间的争论,虽然1801年英国科学家T.Young用双缝做了光的干涉的实验后, 光的波动学说开始为多数学者所接受, 但仍有不少反对意见。
有人认为杨氏条纹不是干涉所致, 而是双缝的边缘效应。
之后法国科学家Augustin J.Fresnel做了几个新实验, 令人信服的证明了光的干涉现象的存在, 这些实验之一就是他在1826年进行的双棱镜实验. 实验不借助光的衍射而形成波面干涉,验证了光的波动性。
本实验通过菲涅耳双棱镜观察各种实验因素改变时对干涉条纹的影响, 测量钠黄光的波长。
二、实验原理(1)菲涅尔双棱镜菲涅耳双棱镜简称双棱镜,是一个顶角A极大的等腰三角形ABC,它可以看成是由两个楔角很小的直角三棱镜ABD和ACD所组成。
当一个点光源S(实验中用线光源也可以,但是要与棱边平行),通过上半个棱镜ABD的光束向下偏折,通过下半个棱镜ACD的光束向上偏折,相当于形成S1’和S2’两个个虚光源。
把观察屏放在两光束的交叠区,可以看到干涉条纹,条纹间距为:D xd λ=其中的d为虚光源S1’和S2’的间距,D是光源到观察屏之间的距离,λ是光的波长。
1、点光源通过双棱镜的折射(2)d的测量——二次成像法在双棱镜和测微目镜之间加入一个焦距为f的凸透镜L,当D>4f时,可以移动L而在测微目镜中看到两个虚光源的缩小像或放大像。
分别读出两个虚光源之间的距离d1和d2,则d二次成像光路三、实验器材与实验步骤实验仪器:光具座(干涉衍射实验装置 SGW—1A型)钠灯钠灯电源(GB—20W)狭缝双棱镜凸透镜测微目镜CW—1实验步骤:1、1、打开钠灯,预热十分钟,在光具座上依次安放光缝、双棱镜、测微目镜,使得两束光的光斑交叠区进入目镜中心。
2、2、减小狭缝的宽度直至从测微目镜中恰好能看到交叠区的亮光。
3、缓慢调节狭缝的方向直至与双棱镜的棱边平行,使在测微目镜中看到干涉条纹。
菲涅耳双棱镜干涉实验一、实验目的了解菲涅耳双棱镜干涉的原理,掌握用这种棱镜来测量波长的方法 二、实验仪器菲涅耳双棱镜 读数显微镜 会聚透镜 狭缝屏 光具座 氦氖激光器 三、实验原理菲涅耳双棱镜是利用分波前的方法实现干涉的常用器件。
它是由玻璃制成的等腰三角棱镜,有两个小的约为1℃锐角和一个大的钝角。
从狭缝S 出射光束经过双棱镜的折射产生狭缝的两个虚光源1S 和2S ,它们是相干光源。
经过双棱镜的两束折射光在重合区域将发生干涉,结果在屏上形成明暗相间的直线形的干涉条纹。
任意相邻的两亮纹或者暗纹之间的间隔δ是:λδdD =上式中D 为虚光源到屏之间的距离,d 为两虚光源的间距,λ是光源的波长。
由此可知,我们只要测定D d δ就可测出光源的波长。
四、实验步骤1. 先将激光束调节到与导轨的棱脊相平行:移动观察屏调节激光束的俯仰角度使得在观察屏的光斑位置不发生变化。
2. 然后将读数显微镜安装到导轨上使得激光光斑落在物镜的中央位置。
3. 接着将透镜安装到导轨上使激光光斑落在物镜的位置不变就说明它们共轴。
4. 再将狭缝添置到导轨上,最后把双棱镜安装到导轨上,让双棱镜的平面正对激光束,倘若反射的光斑从原路返回,则说明光束是垂直入射的,水平调节支架的底座使得双棱镜平分激光束。
5. 现在要做的工作就是将激光器换成钠光灯,再做微调就可以精确对准了。
—6. 将狭缝调小些,调节三棱镜的棱边与狭缝严格平行,此时可从读数显微镜里头看到直线状明暗相间的干涉条纹。
7. 移动透镜让狭缝的虚像经透镜成两次像,测出两次所称像的间隔分别为l 和'l ,则虚光源的间隔'll d =。
8. 测好虚光源的间隔数据后,将会聚透镜放置在狭缝的前面可使得光线更为集中入射到狭缝,并将读数显微镜的叉丝其中一条旋转到与干涉条纹相平行,记下读数显微镜的位置。
9. 进行测量,每隔5条暗条纹测一次,并记下相应的读数,多读几个数据。
10. 挪去双棱镜,移动读数显微镜靠近狭缝知道看清狭缝的边缘,记下此时的读数显微镜的位置,那么狭缝离干涉条纹形成位置的距离就等于这两次读数显微镜位置的差值的绝对值。
实验17 菲涅耳双棱镜干涉测波长利用菲涅耳双棱镜可以获得两束相干光以实现光的干涉。
双棱镜实验和双平面反射镜实验及洛埃镜实验一起,在确立光的波动学说的历史过程中起了重要作用。
同时它也是一种用简单仪器测量光波波长的主要元件。
双棱镜是利用分波阵面法获得相干光的光学元件,本实验用双棱镜实验装置测单色光的波长。
实验目的和学习要求1. 学习用双棱镜干涉测量单色光波长的原理和方法;2. 进一步掌握光学系统的共轴调整;3. 学会测微目镜的使用;4. 练习逐差法处理数据和计算不确定度。
实验原理如果两列光波其频率相同,振动方向相同,相位相同或位相差恒定,且振幅差别不太悬殊的情况下,它们在空间相遇时叠加的结果,将使空间各点的光振幅有大有小,随地而异,形成光的能量在空间的重新分布。
这种在空间一定处光强度的稳定加强或减弱的现象称为光的干涉。
获得相干光源,依其原理不同可分为分振幅法和分波阵面法,牛顿环和劈尖干涉是分振幅的干涉,双棱镜是利用分波阵面法而获得相干光源的。
菲涅耳双棱镜可以看作是由两块底面相接、棱角很小(约为1°)的直角棱镜合成的。
若置波长为λ的单色狭条光源S0于双棱镜的正前方,则从S0射来的光束通过双棱镜的折射后,变为两束相重叠的光,这两束光仿佛是从光源S0的两个虚像S1和S2射出的一样。
由于S1和S2是两个相干光源,所以若在两束光相重叠的区域内再放一屏,即可观察到明暗相间的干涉条纹。
(如图17-1)因为干涉场范围比较窄,干涉条纹的间距也很小,所以一般要用测量显微镜或测微目镜来观察。
图17-1 双棱镜干涉光路现在讨论屏上干涉条纹的分布情况,分别从相干光源S1和S2发出来的光相遇时,若它们之间的光程差δ恰等于半波长(λ/2)的奇数倍,则两光波叠加后为光强极小值;若δ恰等于波长λ的整数倍,两光波叠加后得光强极大值。
即暗纹条件δ = (2-1)λ / 2 = ± 1, ±2 ,……(17-1)明纹条件δ = λ= 0 , ± 1, ±2 , ……(17-2)如图(17-2)所示,设S1和S2是双棱镜所产生的两相干虚光源,其间距为,屏幕到S1S2平面的距离为D,若屏上的P0点到S1和S2的距离相等,则S1和S2发出的光波到P0的光程也相等,因而在P0点相互加强而形成中央明条纹。
实验五 菲涅耳双棱镜干涉[实验目的]1. 观察和研究菲涅耳双棱镜产生的干涉现象; 2. 测量干涉滤光片的透射波长(λ0)。
[仪器和装置]白炽灯,干涉滤光片,可调狭缝,柱面镜,菲涅耳双棱镜,双胶合成像物镜,测微目镜。
[实验原理]如图1a 所示,菲涅耳双棱镜装置由两个相同的棱镜组成。
两个棱镜的折射角α很小,一般约为5 ~ 30'。
从点(或缝)光源S 发出的一束光,经双棱镜折射后分为两束。
从图中可以看出,这两折射光波如同从棱镜形成的两个虚像S 1和S 2发出的一样。
S 1和S 2构成两相干光源,在两光波的迭加区产生干涉。
a、从图1b 看出,若棱镜的折射率为n ,则两虚像S 1、S 2之间的距离a n l d )1(2-= (5-1)干涉条纹的间距λan l l l e )1(2'-+=(5-2)式中,λ为光波的波长。
对于玻璃材料的双棱镜有n =1.50,则λal l l e '+=(5-3) 可得到e l l la'+=λ (5-4) 在迭加区内放置观察屏E ,就可接收到平行于脊棱的等距直线条纹。
若用白光照明,可接收到彩色条纹。
对于扩展光源,由图2可导出干涉孔径角:''l l al +=β (5-5) 和光源临界宽度:⎪⎭⎫⎝⎛+=='1l l a b λβλ (5-6) 从式(5-5)和(5-6)看出,当l'=0时,β=0,则光源的临界宽度b 变为无穷大。
此时,干涉条纹定域在双棱镜的脊棱附近。
b 为有限值时,条纹定域在以下区域内:λαλ-≤b ll ' (5-7)a) 图 1 双棱镜干涉原理图[内容和步骤]1.调整光路,观察和研究双棱镜干涉现象(1) 按图3所示,将光学元件置于光学平台上。
调整光学元件,使其满足同轴等高的要求。
(2) 取l ≈200mm ,l '≈1200mm ,按λ=550nm ,α=30',n =1.50计算出b 的数值。
菲涅尔双棱镜菲涅尔双棱镜是一种光学元件,广泛应用于光学传感器、成像系统以及照明等领域。
它的特点是结构简单、重量轻、使用方便,并且具有良好的光学性能。
本文将介绍菲涅尔双棱镜的基本原理、制作工艺和应用领域。
基本原理菲涅尔双棱镜利用菲涅尔透镜的原理,通过在平面上雕刻一系列的圆环形光阑来实现光学聚焦。
菲涅尔透镜是由一系列圆环形的等弧形光阑组成,每一圈光阑的面积逐渐增大,光线进入后会被透镜表面的曲面透镜和光阑交替的结构所改变,从而产生聚焦效果。
菲涅尔双棱镜的优点之一是光路长度小,因为它不需要像传统透镜那样有一个较大的曲率。
在传统透镜中,光线通过镜面时会受到不必要的折射,从而导致光路长度增加。
而菲涅尔双棱镜通过透镜表面的圆环形光阑来控制光线的传播,降低了不必要的折射,因此光路长度较短。
制作工艺菲涅尔双棱镜的制作工艺相对简单,通常可以通过以下步骤实现:1.设计光学参数:根据所需的光学参数,如聚焦距离、入射孔径等,确定适合的菲涅尔双棱镜参数。
2.绘制图案:使用计算机辅助设计软件或专业绘图软件,绘制菲涅尔双棱镜的光阑图案。
3.制作模具:根据绘制的光阑图案,制作出适合的模具,通常可以使用计算机数控机床进行切割或激光切割等工艺。
4.模具压制:将模具放置在光学材料上,使用适当的压力和温度对其进行压制,使光阑图案可以被复制到光学材料上。
5.抛光和涂层:对压制好的菲涅尔双棱镜进行抛光,使其表面光滑。
然后,可以根据需要进行涂层处理,以提高透射率和反射率。
制作完成后的菲涅尔双棱镜可以具有精确的光学性能和较高的光学效率。
应用领域菲涅尔双棱镜由于其特殊的制作工艺和优异的光学性能,被广泛应用于以下领域:光学传感器菲涅尔双棱镜可以用于光学传感器中,用于检测和测量光线的强度、方向和位置等参数。
例如,在自动聚焦相机中,菲涅尔双棱镜可以用作自动对焦系统的关键元件,通过对光线的聚焦来实现清晰的图像拍摄。
光学成像系统菲涅尔双棱镜也可以用于光学成像系统中,如放大镜、望远镜和显微镜等。