数学必修Ⅱ人教新科标A第一章柱、锥、台、球的结构特征教案
- 格式:doc
- 大小:254.23 KB
- 文档页数:2
必修二《1.1.1柱、锥、台、球的结构特征》教学案(一)教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征.(2)让学生观察、讨论、归纳、概括所学的知识.3.情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象概括能力.(二)教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.(三)教学方法通过提出问题,学生观察空间实物及模型,先独立思考空间几何体的结构特征,然后相互讨论、交流,最后得出完整结论.结构特征.1.有两个面互相平行;2.其余各面都是平行四边形;3.每相邻两个四边形的公共边互相平行.引出棱柱概念之前,应注意对具体的棱柱的特点进行充分分析,让学生能够经历共同特点的概括过程.在得到棱柱的结构特征后教师归结棱柱定义,并结合图形认识棱柱有关概念. 出发,通过概括共同特点得出棱柱的结构特征.例1如图,过BC的截面截去长方形的一角,所得的几何体是不是棱柱?解析:以A′ABB′和D′DCC′为底即知所得几何体是棱柱.例2观察螺杆头部模型,有多少对平行的平面?能作为棱柱底面的有几对?解析:略教师投影例一并读题.有的学生可能会认为不是棱柱,因为如果选择上下两平面为底,则不符合棱柱结构特征的第二条.引导学生讨论:如何判定一个几何体是不是棱柱?教学时应当把学生的注意力引导到用概念进行判断上来,即看所给的几何体是否符合棱柱定义的三个条件.教师投影例2并读题.教师引导学生分析得出,平行平面共有四对,但能作为棱柱底面的只有一对,即上下两个平行平面.引导学生探究:棱柱的哪些平行的面能作为底面,此时侧面是什么?哪些平行的平面不能作为底面?通过改变棱柱放置的位置(变式),引导学生应用概念判别几何体.加深对棱柱结构特征的认识.棱锥1.观察教材节2页的图学生进行观察、讨论、然的结构特征(14)(15)它们有什么共同特征?2.请类比棱柱、得出相关概念,分类及表示.后归纳,教师注意引导,整理.得出棱锥的结构特征,有关概念分类及表示方法.棱锥的结构特征:1.有一个面是多边形.2.其余各面都是有一个公共点的三分形.从分析具体棱锥出发,通过概括棱锥的共同特点,得出棱锥的结构特征.棱台的结构特征1.观察教材第2页中图(13)、(16),思考它们可以怎样得到?有什么共同特征?2.请仿照棱锥中关于侧面、侧棱、顶点的定义,给棱台相关概念下定义.教师在学生讨论中可引导学生思考棱台可以怎样得到,从而迅速得出棱台的结构特征.由一个平行于底面的平面去截棱锥,底面与截面之间的部分.突出棱台的形成过程,把握棱台的结构特征.圆柱的结构特征观察下面这个几何体(圆柱)及得到这种几何体的方法,思考它与棱柱的共同特点,给它定个名称并下定义.教师演示,学生观察,然后学生给出圆柱的名称及定义,教师给出侧面、底面、轴的定义.以矩形一边所在直线为旋转轴,其余三边旋转而成的面所围成的旋转体叫做圆柱.圆柱和棱锥统称为柱体.突出圆柱的形成过程,把握圆柱的结构特征.圆锥的结构特征1.观察下面这个几何体(圆锥)及得到这种几何体的方法,思考它与棱锥的共同特点,给它定个名称并下定义.2.能否将轴改为斜边?以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.圆锥与棱锥统称为锥体.突出圆锥的形成过程,把握圆锥的结构特征.圆台的结构特征下面这种几何体称为圆台,请思考圆台可以用什么办法得到?请在教材图11-9上标上圆台的轴、底面、侧面、母线.学生1:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分.学生2:以直角梯形,垂直于底面的腰为旋转轴,其余各边旋转形成的面所围成的旋转体(教师演示)师:棱台与圆台统称为台体.开放性设计,学生推理与教师演示结合,培养学生思维发散性与灵活性,加深学生对概念理解.球的结构特征观察球的模型,思考球可以用什么办法得到?球上的点有什么共同特点.学生1:以半圆的直径所在直线为旋转思,半圆面旋转一圆形的旋转体叫做球体,简称球.(教师演示)学生2:球上的点到求心的距离等于定长.教师讲解球的球心、半径、直径、表示方法.开放性设计,学生推理与教师演示结合,培养学生思维发散性与灵活性,加深学生对概念理解.归纳总结简单几何体的结构特征及有关概念.学生总结,然后老师补充.回顾反思、归纳知识、提升学生知识、整合能力.课后作业1.1第一课时习案学生独立完成巩固知识提升能力例1下列命题中错误的是( )A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D .圆锥所有的轴截面是全等的等腰三角形【解析】圆锥的母线长相长,设为l ,若圆锥截面三角形顶角为α,圆锥轴截面三角形顶角为θ,则0<α≤θ. 当θ≤90°时,截面面积S = αsin 212l ≤θsin 212l . 当90°<θ<180°时.截面面积S ≤222190sin 21l l =︒⋅,故选B . 例2 根据下列对几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形; (2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的图形.【分析】要判断几何体的类型,首先应熟练掌握各类几何体的结构特征. 【解析】(1)如图1,该几何体满足有两个面平行,其余六个面都是矩形,可使每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)如图2,等腰梯形两底边中点的连线将梯形平分为两个直角梯形,每个直角梯形旋转180°形成半个圆台,故该几何体为圆台.点评:对于不规则的平面图形绕轴旋转问题,要对原平面图形作适当的分割,再根据圆柱、圆 锥、圆台的结构特征进行判断.例3 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长是10cm ,求圆锥的母线长.【分析】 画出圆锥的轴截面,转化为平面问题求解. 【解析】 设圆锥的母线长为ycm ,圆台上、下底面半径分别是xcm 、4xcm .作圆锥的轴截面如图. 在Rt △SOA 中,O′A′∥OA ,∴SA ′∶SA = O′A′∶OA ,即(y -10)∶y =x ∶4x . ∴y =1331.∴圆锥的母线长为1331cm【点评】圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体,其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面.图2图1图4—1—8。
【人教A版】高中数学必修二:1.1.1柱、锥、台、球的结构特征学案设计新人教A版必修2第一章空间几何体1.1 空间几何体的结构1.1.1 柱、锥、台、球的结构特征学习目标1.通过对一些熟悉的物体的观察,增强学生的直观感知,从而能根据几何体的结构特征对空间几何体进行分类.2.会用语言描述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.3.培养学生的空间想象能力和抽象概括能力.学习过程一、回顾旧知,承上启下小学与初中同学们研究过哪些几何图形,在空间范围内研究过哪些?二、探索新知1.观察下面的图片,这些图片中的物体有什么结构特征?特征1特征2特征3棱柱的定义:.2.类比学习其他空间几何体棱锥:特征1,特征2.棱台:特征1,特征2.请同学们结合前面的内容给出旋转体的概念或主要特征?圆柱:.圆锥:.圆台:.球:.3.棱柱、棱台概念的深化理解【例1】(1)如图,过BC的截面截去长方体的一角,所得的几何体还是不是棱柱,被截去的几何体是不是棱柱?(2)观察长方体共有多少对平行平面,能作为棱柱底面的有几对?(3)观察下面的棱柱,有多少对平行的平面,能作为棱柱底面的有几对?(4)有两个面互相平行,其余各面都是平行四边形,由这些面所围成的多面体是否是棱柱?若是,为什么?若不是,试举出一个反例.(5)结合棱台的定义,请同学们判断下列几何体是不是棱台并说明理由.【例2】把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长.三、作业精选,巩固提高1.下列说法正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形2.如图,观察四个几何体,其中判断正确的是( )A.(1)是棱台B.(2)是圆台C.(3)是棱锥D.(4)不是棱柱3.有下列说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得的几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④圆锥的底面是圆面,侧面是曲面.其中错误的有( )A.1个B.2个C.3个D.4个4.有下列说法:①圆柱的轴截面是过母线的截面中最大的一个;②用任意一个平面去截球体得到的截面一定是一个圆面;③用任意一个平面去截圆锥得到的截面一定是一个圆;其中正确的个数是( )A.0B.1C.2D.35.设圆锥的母线长为l,高为,过圆锥的两条母线作一个截面,则截面面积的最大值为.6.直角边为3cm和4cm的直角三角形绕其直角边旋转而形成的圆锥,母线长为.四、反思小结,观点提炼二、1.棱柱的特征1:有两个面互相平行;特征2:其余各面都是平行四边形;特征3:每相邻两个四边形的公共边互相平行.棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面所围成的多面体叫棱柱.2.棱锥的特征1:有一个面是多边形;特征2:其余各面都是有一个公共点的三角形.棱台的特征1:两底面互相平行;特征2:侧棱延长线相交于一点.圆柱的特征:由矩形绕直角边旋转一周形成.圆锥的特征:由直角三角形绕一条直角边旋转一周形成.圆台的特征:由直角梯形绕其直角边旋转一周形成.球的特征:由半圆绕其直径旋转一周形成.3.【例1】(1)是,是.(2)有三对平行平面,这三对都可以作为棱柱的底面.(3)四对平行平面,只有一对可以作为棱柱的底面.(4)不一定是,如图,符合各个平面都是平行四边形但不是棱柱.解答:前两个不是,第一个图形的侧棱不相交于一点,第二个图形的截面与底面不平行;第三个是.【例2】解:设圆锥的母线长为 x,由题意可知:答:圆锥的母线长为cm.三、1.A 2.C 3.B 4.C 5.l26.5cm四、本节学习了多面体和旋转体的概念及其结构特征,通过归纳个别事实抽象出一般性的结论,并运用类比的方法得到了棱锥、棱台的概念,进而得出圆柱、圆锥、圆台的概念并总结出它们的结构特征,最后学习了球的概念和结构特征.本节的重点是棱柱的概念,难点是各个空间几何体的联系和区别,理解它们的概念之间的区别非常重要.(设计意图:通过总结这节课的主体内容,回顾主要知识点,达到提纲挈领的效果.)。
1.1.柱、锥、台、球的结构特征-人教A版必修二教案一、柱体的结构特征柱体是一种线塑体,它具有以下结构特征:1.每个截面都是圆形,而且圆心在这个截面的中心;2.每个截面之间距离相等,所以从任意角度看上去,都是圆形。
柱体在物理世界中十分常见,例如水管、电线杆等。
由于其圆形结构,柱体具有抗弯和抗压的能力较强,因此被广泛使用。
二、锥体的结构特征锥体是一种线塑体,它具有以下结构特征:1.由一个圆锥顶点到底面任意一点的直线段为母线,锥体的结构由该直线段和底面围成;2.底面是个圆形。
锥体在构造物理学中有着广泛的应用,例如锥形漏斗、冰淇淋锥等。
锥体在制作过程中,需要注意底面的圆心和母线的长度,以确保最终产品符合需求。
三、台体的结构特征台体是一种线塑体,它具有以下结构特征:1.由一个圆台顶点到底面圆心的直线段为轴线,台体的结构由该直线段和上下两个圆台围成;2.上下两个圆台面积大小相等。
台体的结构在物理实验中被广泛使用,例如水流研究、电场模拟等。
在设计制作台体时,需注意两个圆台的形状和尺寸,以达到理想的实验效果。
四、球体的结构特征球体是一种线塑体,它具有以下结构特征:1.每个表面都是一个圆形,而且所有圆心都在同一点;2.所有体内点到同一点的距离相等。
球体在物理学、地理学、天文学等领域有着广泛的应用。
例如在天文观测中,我们所看到的星星通常是球体形状的天体。
制作球体时,通常需要注意表面的光滑度、圆心位置和直径等因素。
五、小结本文介绍了四种线塑体:柱体、锥体、台体和球体,以及它们的结构特征。
在物理世界中,这四种形态常常出现,有着广泛的应用。
熟悉这些塑体的结构特征,对于理解相关的物理现象和设计制作模型等都十分重要。
以上仅为基础知识的介绍,希望能够引起读者对这些形体结构的关注,进而领悟常见的物理现象和背后的原理。
第一章 1.1.1.柱.锥.台.球的结构特征【学习目标】1.知道空间几何体的概念及其含义,了解空间几何体的分类及相关概念.2.了解棱柱、棱锥、棱台的定义,知道这三种几何体的结构特征,给出几何体能够识别和区分.【学习重难点】重点:认识空间几何体的结构特征。
难点:柱、锥、台、球的结构特征的概括。
【知识链接】小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫做空间几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧!【基础知识】探究1:多面体的相关概念问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?新知1:多面体:一般地,由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.探究2:旋转体的相关概念问题:仔细观察下列物体的相同点是什么?新知2:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴.在如下图的旋转体中标注出轴。
探究3:棱柱的结构特征问题:你能归纳下列图形共同的几何特征吗?新知3:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的共公边都互相平行,由这些面所围成的多面体叫做棱柱。
棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)O/OA/A试试1:你能指出探究3中的几何体它们各自的底、侧面、侧棱和顶点吗?你能试着按照某种标准将探究3中的棱柱分类吗?新知4:①按底面多边形的边数来分,底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱、五棱柱…②按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直).探究4:棱锥的结构特征问题:探究1中的埃及金字塔是人类建筑的奇迹之一,它具有什么样的几何特征呢?新知5:有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等,棱锥可以用顶点和底面各顶点的字母表示, .如下图中的棱锥S ABCDE探究5:棱台的结构特征问题:假设用一把大刀能把金字塔的上部分平行地切掉,则切掉的部分是什么形状?剩余的部分呢?新知7:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.棱台可以用上、下底面的字母表示,分类类似于棱锥.试试2:请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出来.反思:1.根据结构特征,从变化的角度想一想,棱柱、棱台、棱锥三者之间有什么关系?2.多面体与旋转体的主要区别是什么?提示:多面体是由多个多边形围成的几何体,旋转体是由平面图形绕轴旋转而形成的几何体.3.如何识别棱柱?提示:判断一个几何体是否是棱柱,关键是紧扣棱柱的3个本质特征:①有两个面互相平行;②其余各面是平行四边形;③这些平行四边形面中,每相邻两个面的公共边都互相平行.这3个特征缺一不可,如右图所示的几何体有两个面互相平行,其余各面是平行四边形,但不具备特征③,故不是棱柱.例题讲解例1.如图所示的几何体中棱柱的个数为(c )A.1 B.2 C.3 D.4变式迁移1.下列说法正确的是(D)A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形例2.判断下列说法正确的是:(1)(3)(1)棱锥的各侧面都是三角形;(2)有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;(3)四面体的任何一个面都可以作为棱锥的底面;(4)棱锥的各侧棱长相等.变式迁移2 判断下列语句的对错.(1)一个棱锥至少有四个面;√(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形一定和底面三角形相似.√例3下列四个几何体中,是棱台的为( c)例4.有两个面平行的多面体不可能是( B)A.棱柱 B.棱锥 C.棱台 D.以上都错【达标检测】1.六棱台有_6_______个侧面,______12__个顶点,_____6___条侧棱.2.如图3,过BC的截面截去长方体的一角,使EF∥B′C′,所得几何体是不是棱柱?为什么?解:是棱柱.理由如下:该长方体截去一角后,所得几何体的面ABEA′与面DCFD′是平行的两个面,其余各面都是四边形,且AD∥BC∥EF∥A′D′,故该几何体是棱柱.3.判断如图6所示的几何体是不是棱台?为什么?解:①②③都不是台体.因为①和③都不是由棱锥所截得的,故①③都不是台体,虽然②是由棱锥所截,但截面不和底面平行,故不是台体,只有用平行于锥体底面的平面去截锥体,底面与截面之间的部分才是台体.※学习小结1. 多面体、旋转体的有关概念;2. 棱柱、棱锥、棱台的结构特征及简单的几何性质.※知识拓展1. 平行六面体:底面是平行四边形的四棱柱;2. 正棱柱:底面是正多边形的直棱柱;3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;4. 正棱台:由正棱锥截得的棱台叫做正棱台.【问题与收获】。
1.1柱、锥、球的结构特征教学目的:使学生知道柱、锥、台、球的概念,底面、侧面、侧棱、顶点、母线的概念,能分清它们的结构特征。
教学重点:柱、锥、台、球的概念、结构特征。
教学难点:柱、锥、台、球的区别与联系。
教学过程一、新课引入认识课本P3的图片,从“形”的角度认识物体的几何结构特征。
二、新课1、棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所组围成的几何体叫棱柱(prism)。
棱柱中,两个互相平行的面叫棱柱的底面。
简称底,其余各面叫侧面;相邻侧面的公共边叫棱柱的侧棱;侧面与底面的公共顶点叫棱柱的顶点。
底面是三角形、四边形、五边形···的棱柱分别叫做三棱柱、四棱柱、五棱柱···。
棱柱的表示:ABCDEF-A’B’C’D’E’F’。
2、棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥(pyramid)。
棱锥中,多边形面叫底面或底;有公共顶点的各个三角形叫棱锥的侧面;各侧面的公共顶点叫棱锥的顶点;相邻侧面的公共边叫棱锥的侧棱。
底面是三角形、四边形、五边形···的棱锥分别叫做三棱锥、四棱锥、五棱锥···。
四棱锥表示为:S-ABCD。
3、圆柱的结构特征以矩形的一边所在的直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫圆柱(circular cylinder)。
旋转轴叫圆柱的轴;垂直于轴的边旋转而成的圆面叫圆柱的底面;平行于轴的边旋转而成的曲面叫圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫圆住侧面的母线。
举例说明生活中有哪些圆柱体?圆柱的表示:如图OO’。
圆柱和棱柱统称为柱体。
4、圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥(circular cone)。
《空间几何体的结构(一)》一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修2第一章《空间几何体》中1.1节《空间几何体的结构》的第一课时,主要内容是研究棱柱、棱锥、棱台的结构特征.本节内容是学生在初中学习立体几何图形的基础上,对空间几何体的特征进行系统的总结,提高认识程度,以便达到螺旋上升的目的。
同时本节内容是从整体上把握空间几何体的结构特征,为后续局部研究空间中点、线、面的关系奠定基础。
通过空间几何体,多面体中的棱柱、棱锥、棱台和旋转体中的圆柱、圆锥、圆台、球的概念及基本几何结构,认识空间图形,建立空间概念。
三维空间是人类生存的现实空间,它为我们提供了大量现实的素材。
教学中充分利用现实生活中的素材,在观察、操作、想象、交流等活动中认识空间几何体,然后归纳出它们的结构特征,把握图形的特点,提高空间想象能力。
本节课是本节内容的第一课时,重点是研究棱柱、棱锥和棱台的几何特征。
本节课内容是体现新课程让学生积极动手实践、自主探索、合作交流学习方式的良好素材.本节内容教材借助实物模型,从整体观察入手,通过比较,分析具体实例,引导学生经历从现实生活空间中抽象出空间图形,以及探索空间图形性质的过程,认识棱柱、棱锥和棱台的结构特征,从中让学生体会由具体到抽象,由特殊到一般的研究问题的方法。
同时教学中引导学生运用运动变化的观点认识棱柱、棱锥和棱台的形成过程及其之间的关系,突出空间几何体的本质特征,有利于学生主动探索的学习方式的形成,有利于学生空间想象能力的提高。
本节课教学重点:通过观察大量的实物模型,经历直观感知、分析概括的过程,概括棱柱、棱锥和棱台的结构特征,在学习的过程中初步学会“观察——分析——概括——应用”的探索数学问题的方法.二、目标和目标解析(一)教学目标(1)会用文字语言概括棱柱、棱锥、棱台的结构特征,能根据几何结构特征对空间几何体进行分类;(2)通过直观感受空间实物,从实物中概括出空间几何体的结构特征,提高归纳、概括的能力;(3)能根据几何结构特征对现实生活中的简单物体进行描述,学会通过建立几何模型研究空间图形的方法,培养数学建模的思想;(4)在抽象概括的过程中,感受空间几何体存在于现实生活周围,增强学习数学的积极性,发展空间想象能力和抽象概括能力(二)教学目标解析本节学习内容是在义务教育阶段学习的“空间与图形”的基础上展开的。
第一章空间几何体本章教材分析柱体、锥体、台体和球体是简单的几何体,复杂的几何体大都是由这些简单的几何体组合而成的.有关柱体、锥体、台体和球体的研究是研究比较复杂的几何体的基础.本章研究空间几何体的结构特征、三视图和直观图、表面积和体积等.运用直观感知、操作确认、度量计算等方法,认识和探索空间几何图形及其性质.本章中的有关概念,主要采用分析具体实例的共同特点,再抽象其本质属性空间图形而得到.教学中应充分使用直观模型,必要时要求学生自己制作模型,引导学生直观感知模型,然后再抽象出有关空间几何体的本质属性,从而形成概念.本章内容是在义务教育阶段学习的基础上展开的.例如,对于棱柱,在义务教育阶段直观认识正方体、长方体等的基础上,进一步研究了棱柱的结构特征及其体积、表面积.因此,在教材内容安排中,特别注意了与义务教育阶段“空间与图形”相关内容的衔接.值得注意的是在教学中,要坚持循序渐进,逐步渗透空间想象能力面的训练.由于受有关线面位置关系知识的限制,在讲解空间几何体的结构时,少问为什么,多强调感性认识.要准确把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单几何体的模型,使学生初步感受到信息技术在学习中的重要作用.为了体现教材的选择性,在练习题安排上加大了弹性,教师应根据学生的实际,合理地进行取舍.本章教学时间约需7课时,具体分配如下(仅供参考):影与平行投影§1.1 空间几何体的结构§1.1.1 柱、锥、台、球的结构特征一、教材分析本节教材先展示大量几何体的实物、模型、图片等,让学生感受空间几何体的结构特征,从整体上认识空间几何体,再深入细节认识,更符合学生的认知规律.值得注意的是:由于没有点、直线、平面的有关知识,所以本节的学习不能建立在严格的逻辑推理的基础上,这与以往的教材有较大的区别,教师在教学中要充分注意到这一点.本节教学尽量使用信息技术等手段,向学生展示更多具有典型几何结构特征的空间物体,增强学生的感受.二、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
1.1.1 柱、锥、台、球的结构特征整体设计教学分析本节教材先展示大量几何体的实物、模型、图片等,让学生感受空间几何体的结构特征,从整体上认识空间几何体,再深入细节认识,更符合学生的认知规律.值得注意的是:由于没有点、直线、平面的有关知识,所以本节的学习不能建立在严格的逻辑推理的基础上,这与以往的教材有较大的区别,教师在教学中要充分注意到这一点.本节教学尽量使用信息技术等手段,向学生展示更多具有典型几何结构特征的空间物体,增强学生的感受.三维目标1.掌握柱、锥、台、球的结构特征,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.重点难点教学重点:柱、锥、台、球的结构特征.教学难点:归纳柱、锥、台、球的结构特征.课时安排1课时教学过程导入新课思路1.从古至今,各个国家的建筑物都有各自的特色,古有埃及的金字塔,今有各城市大厦的旋转酒吧、旋转餐厅,还有上海东方明珠塔上的两个球形建筑等.它们都是独具匠心、整体协调的建筑物,是建筑师们集体智慧的结晶.今天我们如何从数学的角度来看待这些建筑物呢?引出课题:柱、锥、台、球的结构特征.思路2.在我们的生活中会经常发现一些具有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流.教师对学生的活动及时给予评价.引出课题:柱、锥、台、球的结构特征.推进新课新知探究提出问题1.观察下面的图片,请将这些图片中的物体分成两类,并说明分类的标准是什么?图12.你能给出多面体和旋转体的定义吗?活动:让学生分组讨论,根据初中已有的知识,学生很快就能分成两类,对没有思路的学生,教师予以提示.1.根据围成几何体的面是否都是平面来分类.2.根据围成几何体的面的特点来定义多面体,利用动态的观点来定义旋转体.讨论结果:1.通过观察,可以发现,(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)具有同样的特点:组成几何体的每个面都是平面图形,并且都是平面多边形,像这样的几何体称为多面体;(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)具有同样的特点:组成它们的面不全是平面图形,像这样的几何体称为旋转体.2.多面体:一般地,由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.按围成多面体的面数分为:四面体、五面体、六面体、……,一个多面体最少有4个面,四面体是三棱锥.棱柱、棱锥、棱台均是多面体.旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,这条定直线叫做旋转体的轴.圆柱、圆锥、圆台、球均是旋转体.提出问题1.与其他多面体相比,图片中的多面体(5)、(7)、(9)具有什么样的共同特征?2.请给出棱柱的定义?3.与其他多面体相比,图片中的多面体(14)、(15)具有什么样的共同特征?4.请给出棱锥的定义.5.利用同样的方法给出棱台的定义.活动:学生先思考或讨论,如果学生没有思路时,教师再提示.对于1、3,可根据围成多面体的各个面的关系来分析.对于2,利用多面体(5)、(7)、(9)的共同特征来定义棱柱.对于4,利用多面体(14)、(15)的共同特征来定义棱锥.对于5,利用图片中的多面体(13)、(16)的共同特征来定义棱台.讨论结果:1.特点是:有两个面平行,其余的面都是平行四边形.像这样的几何体称为棱柱.2.定义:两个平面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体称为棱柱.棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.表示法:用表示底面各顶点的字母表示棱柱.分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱……3.其中一个面是多边形,其余各面是三角形,这样的几何体称为棱锥.4.定义:有一面为多边形,其余各面都是有一个公共顶点的三角形,这些面围成的多面体叫做棱锥.这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.表示法:用顶点和底面各顶点的字母表示.分类:按底面多边形的边数分为三棱锥、四棱锥、五棱锥……5.定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台.原棱锥的底面和截面叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻侧面的公共边叫做棱台的侧棱;底面多边形与侧面的公共顶点叫做棱台的顶点.表示法:用表示底面各顶点的字母表示棱台.分类:按底面多边形的边数分为三棱台、四棱台、五棱台……提出问题1.与其他旋转体相比,图片中的旋转体(1)、(8)具有什么样的共同特征?2.请给出圆柱的定义.3.其他旋转体相比,图片中的旋转体(3)、(6)具有什么样的共同特征?4.请给出圆锥的定义.5.类比圆锥和圆柱的定义方法,请给出圆台的定义.6.用同样的方法给出球的定义.讨论结果:1.静态的观点:有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体.像这样的旋转体称为圆柱.2.定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,圆柱的侧面又称为圆柱面,无论转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.表示:圆柱用表示轴的字母表示.规定:圆柱和棱柱统称为柱体.3.静态的观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角边旋转形成的面围成的旋转体.像这样的旋转体称为圆锥.4.定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥.旋转轴叫做圆锥的轴;垂直于旋转轴的边旋转而成的圆面称为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆锥的侧面,圆锥的侧面又称为圆锥面,无论转到什么位置,这条边都叫做圆锥侧面的母线.表示:圆锥用表示轴的字母表示.规定:圆锥和棱锥统称为锥体.5.定义:以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.还可以看成是用平行于圆锥底面的平面截这个圆锥,截面与底面之间的部分.旋转轴叫做圆台的轴;垂直于旋转轴的边旋转而成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫做圆台侧面的母线.表示:圆台用表示轴的字母表示.规定:圆台和棱台统称为台体.6.定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称球.半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径.表示:用表示球心的字母表示.知识总结:1.棱柱、棱锥、棱台的结构特征比较,如下表所示:2.圆柱、圆锥、圆台、球的结构特征比较,如下表所示:3.简单几何体的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧球圆台圆锥圆柱旋转体棱台棱锥棱柱多面体简单几何体应用示例思路1例1 下列几何体是棱柱的有( )图2A.5个B.4个C.3个D.2个活动:判断一个几何体是哪种几何体,一定要紧扣柱、锥、台、球的结构特征,注意定义中的特殊字眼,切不可马虎大意.棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.答案:D点评:本题主要考查棱柱的结构特征.本题容易错认为几何体②也是棱柱,其原因是忽视了棱柱必须有两个面平行这个结构特征,避免出现此类错误的方法是将教材中的各种几何体的结构特征放在一起对比,并且和图形对应起来记忆,要做到看到文字叙述就想到图,看到图形就想到文字叙述.变式训练1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱.其中正确的有__________个.()A.1B.2C.3D.4分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.答案:A2.下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点答案:D3.下列命题中正确的是()A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B 不正确;圆锥仅有一个底面,所以C 不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D 不正确.很明显A 正确. 答案:A思路2例1长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( ) A.31+ B.102+ C.23 D.32 活动:解决空间几何体表面上两点间最短线路问题,一般都是将空间几何体表面展开,转化为求平面内两点间线段长,这体现了数学中的转化思想.解:如图3,在长方体ABCD —A 1B 1C 1D 1中,AB=3,BC=2,BB 1=1.图3如图4所示,将侧面ABB 1A 1和侧面BCC 1B 1展开,图4则有AC 1=261522=+,即经过侧面ABB 1A 1和侧面BCC 1B 1时的最短距离是26;如图5所示,将侧面ABB 1A 1和底面A 1B 1C 1D 1展开,则有AC 1=233322=+,即经过侧面ABB 1A 1和底面A 1B 1C 1D 1时的最短距离是23;图5如图6所示,将侧面ADD 1A 1和底面A 1B 1C 1D 1展开,图6则有AC 1=522422=+,即经过侧面ADD 1A 1和底面A 1B 1C 1D 1时的最短距离是52. 由于23<52,23<26,所以由A 到C 1在正方体表面上的最短距离为23. 答案:C点评:本题主要考查空间几何体的简单运算及转化思想.求表面上最短距离可把图形展成平面图形. 变式训练1.图7是边长为1 m 的正方体,有一蜘蛛潜伏在A 处,B 处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,描述蜘蛛爬行的最短路线.图7 图8分析:制作实物模型(略).通过正方体的展开图8可以发现,AB 间的最短距离为A 、B 两点间的线段的长51222=+.由展开图可以发现,C 点为其中一条棱的中点.具体爬行路线如图9中的粗线所示,我们要注意的是爬行路线并不唯一. 解:爬行路线如图9(1)—(6)所示:图92.如图10所示,已知正三棱柱ABC —A 1B 1C 1的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周..到达A 1点的最短路线的长为_________.图10分析:将正三棱柱ABC —A 1B 1C 1沿侧棱AA 1展开,其侧面展开图如图11所示,则沿着三棱柱的侧面绕行两周..到达A 1点的最短路线的长就是图11中AD+DA 1.延长A 1F 至M ,使得A 1F=FM ,连接DM ,则A 1D=DM ,如图12所示.图11 图12则沿着三棱柱的侧面绕行两周..到达A 1点的最短路线的长就是图12中线段AM 的长.在图12中,△AA 1M 是直角三角形,则AM=222121)111111(8++++++=+M A AA =10.答案:10 知能训练1.如图13,观察四个几何体,其中判断正确的是( )图13A.(1)是棱台B.(2)是圆台C.(3)是棱锥D.(4)不是棱柱分析:图(1)不是由棱锥截来的,所以(1)不是棱台;图(2)上下两个面不平行,所以(2)不是圆台;图(4)前后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以(4)是棱柱;很明显(3)是棱锥.答案:C2.下面几何体中,过轴的截面一定是圆面的是()A.圆柱B.圆锥C.球D.圆台分析:圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,球的轴截面是圆面,所以A、B、D均不正确.答案:C3.一个无盖的正方体盒子展开后的平面图,如图14所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=____________.图14分析:如图15所示,折成正方体,很明显点A、B、C是上底面正方形的三个顶点,则∠ABC=90°.图15答案:90°4.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H 反面的字母是___________.图16分析:正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S 的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H 、E 、O 、p 、d ,因此只能是标有“p”与“d”的面是同一个面,p 与d 是一个字母;翻转图②,使S 面调整到正前面,使p 转成d ,则O 为正下面,所以H 的反面是O.答案:O5.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.分析:这类题目应该选取轴截面研究几何关系.解:圆台的轴截面如图17,图17设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S.在Rt △SOA 中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x.所以OO 1=2x. 又21(6x+2x )·2x=392,解得x=7, 所以圆台的高OO 1=14 cm ,母线长l=2OO 1=214cm ,而底面半径分别为7 cm 和21 cm, 即圆台的高14 cm ,母线长214cm ,底面半径分别为7 cm 和21 cm.6.(2005全国高中数学竞赛浙江预赛,4)正方体的截平面不可能...是 ①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形.下述选项正确的是:( )A.①②⑤B.①②④C.②③④D.③④⑤分析:正方体的截平面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形(证明略);对四边形来讲,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形(证明略);对五边形来讲,不可能是正五边形(证明略);对六边形来讲,可以是六边形(正六边形).答案:B拓展提升1.有两个面互相平行,其余各面是平行四边形的几何体是棱柱吗?分析:如图18所示,此几何体有两个面互相平行,其余各面是平行四边形,很明显这个几何体不是棱柱,因此说有两个面互相平行,其余各面是平行四边形的几何体不一定是棱柱.图18由此看,判断一个几何体是否是棱柱,关键是紧扣棱柱的3个本质特征:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行.这3个特征缺一不可,图18所示的几何体不具备特征③.2.有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?剖析:如图19所示,将正方体ABCD—A1B1C1D1截去两个三棱锥A—A1B1D1和C—B1C1D1,得如图20所示的几何体.图19 图20图20所示的几何体有一个面ABCD是四边形,其余各面都是三角形的几何体,很明显这个几何体不是棱锥,因此说有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥.由此看,判断一个几何体是否是棱锥,关键是紧扣棱锥的3个本质特征:①有一个面是多边形;②其余各面都是三角形;③这些三角形面有一个公共顶点.这3个特征缺一不可,图18所示的几何体不具备特征③.课堂小结本节课学习了柱体、锥体、台体、球体的结构特征.作业1.如图21,甲所示为一几何体的展开图.图21(1)沿图中虚线将它们折叠起来,是哪一种几何体?试用文字描述并画出示意图.(2)需要多少个这样的几何体才能拼成一个棱长为6 cm的正方体?请在图乙棱长为6 cm的正方体ABCD—A1B1C1D1中指出这几个几何体的名称.答案:(1)有一条侧棱垂直于底面且底面为正方形的四棱锥,如图22甲所示.图22(2)需要3个这样的几何体,如图22乙所示.分别为四棱锥:A1—CDD1C1,A1—ABCD,A1—BCC1B1.2.如图23,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4.M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N,求P点的位置.图23分析:把三棱锥展开后放在平面上,通过列方程解应用题来求出P到C点的距离,即确定了P点的位置.解:如图24所示,把正三棱锥展开后,设CP=x,图24 根据已知可得方程22+(3+x)2=29.解得x=2.所以P点的位置在离C点距离为2的地方.。
第1课时 1.1.1柱、锥、台、球的结构特征(一)教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体、台体、球体结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、体、球体结构特征. 教学难点:柱、锥、台、球的结构特征的概括. 教学过程:一、新课导入:1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算. 二、讲授新课:1. 教学棱柱、棱锥的结构特征:(1)提问:举例生活中有哪些实例给我们以两个面平行的形象? (2)讨论:给一个长方体模型,经过上、下两个底面用刀垂直切, 得到的几何体有哪些公共特征?把这些几何体用水平 力推斜后,仍然有哪些公共特征?(3)定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共 边都互相平行,由这些面所围成 的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽) 结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线. (4)分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等. 表示:棱柱ABCDE-A ’B ’C ’D ’E ’(5)讨论:埃及金字塔具有什么几何特征?(6)定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥. 结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?(7)讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的 性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(8)讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?(9) 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台. →列举生活中的实例结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得? (10)讨论:棱台、圆台分别具有一些什么几何性质?棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.(11) 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? (以台体的上底面变化为线索) EDC BAN M A E CB O E DC B A S2. 教学圆柱、圆锥的结构特征: (1) 讨论:圆柱、圆锥如何形成?(2) 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→ 列举生活中的棱柱实例 →结合图形认识:底面、轴、侧面、母线、高. → 表示方法 (3) 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体.(4) 观察书P2若干图形,找出相应几何体; 举例:生活中的柱体、锥体. (5) 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?(6) 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台. →列举生活中的实例结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得? (7) 讨论:棱台、圆台分别具有一些什么几何性质?棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.(8) 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? (以台体的上底面变化为线索) 3.教学球体的结构特征:① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体. →列举生活中的实例结合图形认识:球心、半径、直径. → 球的表示.② 讨论:球有一些什么几何性质?③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)4. 小结:几何图形;相关概念;相关性质;生活实例 三、巩固练习:1. 练习:教材P7 1、2题.2. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.3.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.4.正四棱锥的底面积为462cm ,侧面等腰三角形面积为62cm ,求正四棱锥侧棱.§1.1.1 柱、锥、台、球的结构特征学习目标:认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.逐步培养观察能力和抽象概括能力.结 构 特 征图例棱柱 (1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等.圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.OBABA O母线侧面轴底面底面侧棱侧面顶点F E DC BABCDE F棱锥 (1)底面是多边形,各侧面均是三角形; (2)各侧面有一个公共顶点. 圆锥(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.OBA母线侧面轴底面S底面侧棱侧面顶点F E D CBSA棱台 (1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台(1)两底面相互平行; (2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.OBA母线侧面轴底面底面侧棱侧面顶点F E D CBO A AB CDEF球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.半径圆心【例1】请描述下列几何体的结构特征,并说出它的名称.(1)由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形; (2)如右图,一个圆环面绕着过圆心的直线l 旋转180°. 解:(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形.几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.【例2】若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.解:底面正三角形中,边长为3,高为333sin 60⨯︒=33233=222(3)1-. 【例3】用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、 下底面的面积之比为1:16,截去的圆锥的母线长是3cm , 求圆台的母线长.解:设圆台的母线为l ,截得圆台的上、下底面半径分别为r ,4r .根据相似三角形的性质得,334rl r=+,解得9l =. 所以,圆台的母线长为9cm .点评:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,构设相关几何变量的方程组而解得.【例4】长方体的一条对角线与一个顶点处的三条棱所成的角分别为,,αβγ,求222cos cos cos αβγ++与222sin sin sin αβγ++的值.解:设长方体的一个顶点出发的长、宽、高分别为a 、b 、c ,相应对角线长为l ,则222l a b c =++222222cos cos cos ()()()1a b cl l lαβγ++=++=,∴ 222cos cos cos αβγ++=1.l S OAr l r4S OAr lr4C A 1B 1C 1DD 1222222222222sin sin sin 2b c a c a b l l l αβγ+++++=++=,∴ 222sin sin sin αβγ++=2.点评:从长方体的一个顶点出发的对角线与三条棱,均位于直角三角形中,利用直角三角形中的边角关系“cos α=邻斜”、“sin α=对斜”而求. 关键在于找准直角三角形中的三边,斜边是长方体的对角线,角的邻边是各棱长,角的对边是相应矩形面的对角线.※基础达标1.一个棱柱是正四棱柱的条件是( ).A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱 2.下列说法中正确的是( ).A. 以直角三角形的一边为轴旋转所得的旋转体是圆锥B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台C. 圆柱、圆锥、圆台的底面都是圆D. 圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径 3.下列说法错误的是( ).A. 若棱柱的底面边长相等,则它的各个侧面的面积相等B. 九棱柱有9条侧棱,9个侧面,侧面为平行四边形C. 六角螺帽、三棱镜都是棱柱D. 三棱柱的侧面为三角形4.用一个平面去截正方体,所得的截面不可能是( ).A. 六边形B. 菱形C. 梯形D. 直角三角形 5.下列说法正确的是( ).A. 平行于圆锥某一母线的截面是等腰三角形B. 平行于圆台某一母线的截面是等腰梯形C. 过圆锥顶点的截面是等腰三角形D. 过圆台上底面中心的截面是等腰梯形6.设圆锥母线长为l ,高为2l,过圆锥的两条母线作一个截面,则截面面积的最大值为 . 7.若长方体的三个面的面积分别为62cm ,32cm ,22cm ,则此长方体的对角线长为 .※能力提高8.长方体的全面积为11,十二条棱的长度之和为24,求这个长方体的一条对角线长.9.如图所示,长方体1111ABCD A B C D -.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM 把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示. 如果不是,说明理由.N M D CB A D 1A 1C 1B 1※探究创新10.现有一批长方体金属原料,其长宽高的规格为12×3×3.1(长度单位:米). 某车间要用这些原料切割出两种长方体,其长宽高的规格第一种为3×2.4×1,第二种为4×1.5×0.7.若这两种长方体各需900个,假设忽略切割损耗,问至少需多少块金属长方体原料?如何切割?此时材料的利用率是多少?(计算到小数点后面3位)1~5 DCDDC ; 6.23l ; 7. 14cm . 8. 解:设长方体的长、宽、高分别为a 、b 、c ,则2()114()24ab bc ac a b c ++=⎧⎨++=⎩,而对角线长22222()2226115l a b c a b c ab bc ac =++=++---=-=.9. 解:(1)是棱柱,并且是四棱柱. 因为以长方体相对的两个面作底面都是全等的四边形,其余各面都是矩形,且四条侧棱互相平行,符合棱柱定义.(2)截面BCNM 的上方部分是三棱柱11BB B CC M -,下方部分是四棱柱11ABMA DCND -. 10. 解:把原料切割出所需的两种长方体而没有余料,只有两种切法,见图(Ⅰ)和(Ⅱ). 切法(Ⅰ)切割出12个第一种长方体和6个第二种长方体,切法(Ⅱ)切割出5个第一种长方体和18个第二种长方体.取3块原料,2块按切法(Ⅰ)切割,1块按切法(Ⅱ)切割.得到29个第一种长方体和30个第二种长方体.因此,取90块原料,其中60块按切法(Ⅰ)切割, 30块按切法(Ⅱ)切割,共得到 870个第一种长方体和900个第二种长方体.至此,没产生任何余料,但还差30个第一种长方体.再取2块原料,按切法(Ⅲ)切割(见图),得30个第一种长方体.每块原料剩下12×3×0.1的余料.因此,为了得到这两种长方体各 900个,至少需 90+2=92块原料.此时,材料的利用率为(3120.1)20.21199.9(312 3.1)92 3.192⨯⨯⨯-=-≈%⨯⨯⨯⨯。
数学必修Ⅱ人教新科标A第一章柱、锥、台、球的结构特征教案一、三维目标
1.知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本P8,习题1.1 A组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7 练习1、2(1)(2)
课本P8 习题1.1 第2、3、4题
五、归纳整理
由学生整理学习了哪些内容
感谢您的阅读,祝您生活愉快。