液力偶合器
- 格式:doc
- 大小:1.17 MB
- 文档页数:12
液力偶合器工作原理液力偶合器是一种常见的传动装置,广泛应用于汽车、工程机械、船舶等领域。
它的主要作用是传递动力,并且具有扭矩放大和平稳传动的特点。
液力偶合器的工作原理是利用液体在转子间传递动力,下面我们来详细了解一下液力偶合器的工作原理。
液力偶合器由泵轮、涡轮和导向轮组成。
泵轮和涡轮之间充满了液体,通常是液压油。
当发动机转动时,驱动泵轮产生液体流动,液体流动的动能被传递到涡轮上,从而驱动涡轮转动。
而导向轮则起到引导液体流动的作用,使得液体能够顺利地从泵轮传递到涡轮。
液力偶合器的工作原理可以用流体力学来解释。
当液体在泵轮上受到驱动时,它会产生离心力,使得液体流向涡轮。
液体在涡轮上转动时,产生的动能被传递到涡轮上,从而驱动涡轮转动。
这样就实现了动力的传递。
液体的流动还会产生一定的涡流,使得涡轮上的液体也产生一定的离心力,从而形成一种“自扭矩放大”的效应。
液力偶合器还具有一个重要的特点,就是可以通过调整液体的流动速度来实现扭矩的调节。
当液体流动速度增加时,传递到涡轮上的动能也会增加,从而实现了扭矩的放大。
这使得液力偶合器可以适应不同工况下的扭矩需求,提高了传动系统的灵活性和适应性。
此外,液力偶合器还具有平稳传动的特点。
由于液体的流动具有一定的缓冲和减震作用,液力偶合器可以实现动力的平稳传递,减小了传动系统的冲击和振动,保护了传动系统的零部件,延长了使用寿命。
总的来说,液力偶合器的工作原理是利用液体在泵轮和涡轮间传递动能,实现动力的传递和扭矩的放大。
它具有扭矩放大、平稳传动和扭矩调节的特点,适用于各种工况下的传动需求。
液力偶合器在汽车、工程机械、船舶等领域有着广泛的应用,是一种高效、可靠的传动装置。
液力耦合器工作原理
液力耦合器是一种常见的传动装置,它通过液体的动力传递来实现机械设备的
启动和运转。
其工作原理涉及到流体力学和动力学的知识,下面我们将详细介绍液力耦合器的工作原理。
液力耦合器主要由泵轮、涡轮和液体填充物组成。
当发动机启动时,泵轮开始
旋转,液体填充物被泵轮带动产生旋转运动。
涡轮则受到液体填充物的冲击而开始旋转,从而驱动机械设备的转动。
在液力耦合器中,液体填充物起着至关重要的作用。
液体填充物会随着泵轮的
旋转而产生离心力,使得液体填充物沿径向流动,形成一个旋涡。
这个旋涡将动能传递给涡轮,从而实现机械设备的传动。
液力耦合器的工作原理可以用流体力学和动力学的知识来解释。
在液体填充物
的流动过程中,涡流的产生和传递涉及到液体的动量守恒和能量守恒。
液体填充物的流动速度和压力分布对液力耦合器的传动特性有着重要的影响。
液力耦合器的工作原理可以简单概括为液体填充物的动能转换。
当泵轮旋转时,液体填充物的动能被传递给涡轮,从而实现机械设备的传动。
这种传动方式具有平稳、无级变速的特点,适用于需要频繁启停和变速的机械设备。
总之,液力耦合器是一种通过液体动力传递实现机械传动的装置,其工作原理
涉及到流体力学和动力学的知识。
通过液体填充物的流动和动能转换,液力耦合器能够实现机械设备的平稳传动,具有重要的应用价值。
希望本文能够帮助读者更好地理解液力耦合器的工作原理。
液力偶合器原理液力偶合器是一种常见的动力传递装置,它通过液体的流动来实现两个轴之间的动力传递。
液力偶合器广泛应用于各种机械设备中,如汽车、船舶、工程机械等,其原理和工作方式对于机械传动系统的性能具有重要影响。
液力偶合器的工作原理主要包括泵轮和涡轮两个基本部分。
泵轮由发动机轴驱动,它产生液体流动并传递动能;涡轮则由传动轴驱动,通过液体的动能转换实现动力输出。
在液力偶合器内部,液体被用作传递动能的媒介,其流动状态和流速的变化直接影响着液力偶合器的工作效果。
液力偶合器的工作过程可以简单描述为,当泵轮被发动机轴驱动时,液体被加速并产生动能,然后流向涡轮,使其转动并输出动力。
在这个过程中,液体的流动状态受到内部叶轮和导向器的影响,它们能够改变液体的流向和流速,从而实现动力的调节和传递。
液力偶合器的原理是基于液体动力传递的,其优点在于能够实现平稳的动力输出和无级调速。
由于液体的流动具有自动调节的特性,液力偶合器在启动、加速和减速过程中能够保持较稳定的工作状态,不会产生冲击和震动,从而延长了机械设备的使用寿命。
此外,液力偶合器还具有一定的过载保护功能。
当机械设备受到外部冲击或超载时,液力偶合器能够通过液体的流动调节传递动能,起到缓冲和保护的作用,有效减轻了设备的损坏程度。
总的来说,液力偶合器是一种高效、可靠的动力传递装置,其原理基于液体的流动和动能传递。
在实际应用中,液力偶合器能够实现平稳的动力输出、无级调速和过载保护,为机械设备的运行提供了重要支持。
通过对液力偶合器原理的深入理解,可以更好地应用和维护液力偶合器,提高机械设备的工作效率和可靠性,为工程和生产活动提供更好的动力支持。
同时,深入研究液力偶合器的工作原理,也有助于优化传动系统的设计和改进,推动机械工程技术的发展和进步。
液力偶合器的工作特点-概述说明以及解释1.引言1.1 概述液力偶合器是一种常见的机械传动装置,广泛应用于各种工业领域。
它具有许多独特的工作特点,使其在各种应用场景中得到了广泛的应用和推广。
液力偶合器的工作原理是利用液体的运动和流体动力学原理来传递动力。
它主要由两个主要组成部分组成:泵轮和涡轮。
泵轮又称为驱动轮,由发动机通过传动装置驱动。
涡轮又称为工作轮,通过传动装置连接到机械设备。
在液力偶合器中,泵轮和涡轮之间通过液体进行能量的传递和转换。
当发动机驱动泵轮旋转时,泵轮在液体的作用下产生高速旋转的离心力,使液体产生向外运动的径向流动。
这种流动产生的压力使液体流向涡轮,并在涡轮的叶片上产生反作用力,从而使涡轮开始旋转。
通过这种方式,发动机的动力被传递到涡轮,从而驱动机械设备的工作。
液力偶合器的工作特点主要有以下几个方面:1.启动平稳:液力偶合器在启动时,液体的流动产生的离心力可以平稳地传递和转换动力,避免了传统机械传动中的冲击和颤振现象。
这使得机械设备在启动过程中能够平稳地达到工作状态,减少了设备的磨损和损坏。
2.扭矩放大:液力偶合器具有扭矩放大的特点,即在传递动力的过程中,可以在不改变转速的情况下增加输出扭矩。
这使得液力偶合器在需要大扭矩输出的场合中具有重要的应用价值,例如起重机、重型机械设备等。
3.自动调节:液力偶合器能够根据负载的变化自动调节工作状态,使得输出的转速和扭矩能够始终保持在一个合适的范围内。
这种自动调节能力使得机械设备在不同工况下都能够保持高效稳定的工作状态。
4.冷却和润滑:液力偶合器中的液体不仅可以传递动力,还可以起到冷却和润滑的作用。
在高速旋转的过程中,液体可以带走摩擦产生的热量,起到冷却的效果。
同时,液体还可以润滑液力偶合器的内部零部件,减少磨损和损坏。
综上所述,液力偶合器具备启动平稳、扭矩放大、自动调节、冷却和润滑等特点,使其成为许多机械传动系统中不可或缺的重要组成部分。
在各种工业领域中,液力偶合器的应用已得到广泛推广,并取得了显著的经济和环境效益。
1、液力耦合器的结构组成液力耦合器是一种液力传动装置,又称液力联轴器。
它的主要功能有两个方面,一是防止发动机过载,二是调节工作机构的转速。
其结构主要由壳体、泵轮、涡轮三个部分组成,如图1-2 所示。
图1-2 液力耦合器的基本构造1-输入轴2-泵轮叶轮3-涡轮叶轮4-轮出轴液力耦合器的壳体安装在发动机飞轮上,泵轮与壳体焊接在一起,随发动机曲轴的转动而转动,是液力耦合器的主动部分:涡轮和输出轴连接在一起,是液力耦合器的从动部分。
泵轮和涡轮相对安装,统称为工作轮。
在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。
两者之间有一定的间隙(约3mm~4mm);泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。
2、液力耦合器的工作原理液力偶合器以液体为介质传递功率,当动力机通过输入轴带动泵轮转动时,充注在工作腔中的工作液体在离心力作用下,沿泵轮叶片流道向外缘流动,使液体的动量矩增大。
当工作液体由泵轮冲向对面的涡轮时,工作液体便沿涡轮叶片流道做向心流动,同时释放能量并将其转化为机械能,驱动涡轮旋转并带动工作机做功。
靠着液体的传动使动力机和工作机柔性地联接在一起。
改变液力耦合器工作腔的充满度,便可以调节输出力矩和输出转速,充满度升高则输出转速升高,反之则降低,并可实现无级调速。
液力偶合器调速的特点⑴、无级调速,在液力耦合器输入转速不变的情况下,可以输出无级连续变化的、且变化范围很宽的转速,当转速变化较大时,与节流调节相比较,有显著的节能效果。
⑵、空载起动,电动机可以在空载或轻载下启动,减少对电网冲击,因而可选用容量较小的电动机及电控设备,减少设备的投资,降低起动电流。
⑶、隔离振动,液力偶合器的泵轮和涡轮之间没有机械联系,转矩通过工作液体传递,是柔性连接。
当主动轴有周期性振动(如扭振等)时,不会传到从动轴上,具有良好的隔振效果。
能减缓冲击负荷,延长电动机或风机的机械寿命。
⑷、过载保护。
由于液力偶合器是柔性传动,其泵轮与涡轮之间有转速差,故当从动轴阻力矩突然增加时,转速差增大,甚至当风机负荷使机器制动时,动力机仍能继续运转而不烧毁,风机也可受到保护。
液力偶合器一、设备概述;液力耦合器是安装在电动机与泵之间的一种传递部件,从电机至液力偶合器和偶合器至水泵之间是采用绕性联轴器连接,而偶合器与一般的联轴器不同之处是,它是通过工作油来传递和转换能量的。
它主要由主动轴、泵轮、涡轮、从动轴以及防止漏油的旋转内套等组成,泵轮与涡轮分别装在主动轮和从动轮上,它们之间无机械联系。
旋转外套在其外缘法兰处用螺栓与泵轮相连接。
泵轮与涡轮的轴心线相重合,内腔相对布置,两轮侧板的内腔形状和几何尺寸相同,轮内装有许多径向辐射形叶片,两轮端面留有适当的间隙。
构成一个液流通道,叫工作腔,工作腔的轴面投影称为流道。
运转时,在夜里偶合器中充满工作油,当主动轮带动泵轮回转时,泵轮流道中的工作油因离心力的作用,沿着径向流道由泵轮内侧(进口)流向外缘(出口)形成高压高速油。
在出口处以径向相对速度与泵轮出口圆周速度形成合速,冲入涡轮的进口径向流道,并沿着流道由工作油动量矩的改变去推动涡轮,使其跟随泵轮作同方向旋转。
但它们的转速不可能完全相同,因液体不具有刚性,假使它们在同一转数下旋转,则工作油就不会再冲击涡轮,因而就不会发生动力传递。
一般泵轮与涡轮的转差率为3%-4% 。
油在涡轮流道中由外缘(入口)流向内侧(出口)的过程中减压减速,在出口中又以径向相对速度与涡轮出口圆周形成合速。
冲入泵轮的进口径向流道,重新在泵轮中获得能量。
如此周而复始,构成工作油在泵轮和涡轮两者间的自然环流。
在这种循环中,泵轮将输入的机械功转化为工作油的动能和压力能,而涡轮则将工作油的动能和势能转换为输出的机械功。
从而实现电动机到水泵之间的动力传递。
工作油越多,则传递的动力愈大,也就增加了涡轮的传递。
而工作油减少时,情况正与上述相反。
工作油量靠勺管来调节的,二、液力偶合器构造现以德国voith公司生产的R15K-2.E型液力偶合器为例,主要部件有;箱体、传动齿轮和轴、液力偶合器、轴承、油泵、勺管调节装置、冷油器、油滤网等。
液力偶合器工作原理
液力偶合器是一种常见的传动装置,它通过液体在转子之间传递动力,实现机
械传动。
液力偶合器的工作原理主要包括液体传递动力、转子之间的流体摩擦和动力调节三个方面。
首先,液力偶合器的工作原理涉及液体传递动力。
当原动机转动时,液体被带
动产生旋转,形成一个旋涡。
这个旋涡会带动液体在转子之间流动,从而传递动力。
这种液体传递动力的方式使得液力偶合器能够实现无级调速,使得其在各种机械传动中应用广泛。
其次,液力偶合器的工作原理还涉及转子之间的流体摩擦。
当液体在转子之间
流动时,会产生流体摩擦。
这种摩擦会使得转子之间产生一定的阻力,从而实现动力的传递。
流体摩擦的作用使得液力偶合器能够承受一定的负载,同时也能够保证传动的稳定性和可靠性。
最后,液力偶合器的工作原理还包括动力调节。
通过改变液体的流动状态和流速,可以实现对动力的调节。
例如,在车辆的变速器中,通过控制液体的流动,可以实现对车速的调节。
这种动力调节的方式使得液力偶合器能够适应不同工况下的动力需求,提高了其在实际应用中的灵活性和适用性。
综上所述,液力偶合器的工作原理主要包括液体传递动力、转子之间的流体摩
擦和动力调节。
这些原理使得液力偶合器能够在各种机械传动中发挥重要作用,为工程和技术领域提供了便利和支持。
液力偶合器的工作原理深入浅出,希望能够对大家有所帮助。
液力偶合器
YOTGCD型(箱体对开式调速型液力偶合器
1.1概述及工作原理
液力偶合器主要由箱体、泵轮、涡轮、导流管、进油腔、排油腔体、泵轮轴、涡轮轴等组成。
泵轮、涡轮和转动外壳均采用高强度铝合金制成,具有重量轻、强度高的特点,供油腔体及排油腔体分别固定在箱体的输入端及输出端,兼做泵轮轴、涡轮轴的轴承座,旋转部件通过泵轮轴和涡轮轴及轴承由箱体支撑,全部采用滚动轴承,结构紧凑。
箱体上装有供油泵,由泵轮轴上的齿轮带动。
工作机起动时,导流管处于零位,工作油不能进入工作腔。
改变传给电动执行器的信号,电动执行器将带动导流管作直线移动,从而改变导流管在转动外壳内的径向位置达到无极调速。
采用连杆机构调速比较平稳,导流管随连杆移动到最外侧位置时为最高转速。
导流管装在排油腔体上,转动外壳内的油通过导流管排出,直接进入箱体。
涡轮轴上装有测速齿轮,输出端盖上装有磁性转速传感器,输出转速通过传感器可在二次仪表上直接显示。
工作原理:如图,调速型液力偶合器由泵轮、涡轮、转动外壳、导流管等组成。
泵轮和涡轮对称布置,中间保持一定间隙,轮内有几十片径向辐射的叶片,运转时在偶合器中充油,当输入轴带动泵轮旋转时,进入泵轮的油在叶片带动下,因离心力作用由泵轮内侧流向外圆,形成高压高速液流冲向涡轮叶片,使涡轮跟随泵轮做同向旋转,油在涡轮中由外缘流向内侧,被迫减压减速,然后流入泵轮,在这种循环中,泵轮将原动机的机械能转变成油的动能和势能,而涡轮则将油的动能和势能又转变成输出轴的机械能,从而实现能量的柔性传递。
转动外壳与泵轮相连,转动外壳腔内放置一根可径向位移的导流管,运转时,腔内的油随转动外壳一起以与泵轮相同的转速旋转,以圆周速度旋转的油环碰到固定不转(只能移动)的导流管头端的孔口,动能就变成位能,油环的油即自导流管流出,偶合器中的油量只能与导流管孔口相齐平,只要改变导流管的位置,就能改变偶合器中的充油度,就可在原动机转速不变的条件下实现工作机的无机调速。
1.2液力偶合器技术规范
1.3检修工艺及质量标准
1.4常见故障及消除方法
1. 概述
YOT CG 调速型液力偶合器一般安装在三相异步电机和工作机之间,它可在电机输入转速不变的条件下,以电动执行机构带动勺管改变其工作腔(泵轮与涡轮间)充液量从而对其输出转速(即工作机转速)进行无级调节,调速过程柔和平滑,输出转速稳定,动力传递可靠,广泛用于风机、水泵、皮带机等负载的工况调节。
调速型液力偶合器用于拖动特性为M ∝n 2的负载(如风机、水泵)其稳定调速范围约为1~1/5;用于拖动M =C 负载(如皮带机)时,其稳定调速范围约为1~1/3。
2. 主要技术参数
①产品型号
结构改型(01-99)
工作机设计转速(r/min)
电机同步转速(r/min)
规格(名义有效直径,mm)
箱体结构型式(P:剖分式;F:法兰式;Z:整体式)
轴承形式(G:滚动轴承;H:滑动轴承)
轴速调节方式(C:出口调节;R:入口调节;B:变频调节;Z:增速;J降速)
主传动齿轮型式(Q:前置;H;后置)
单机或传动装置型式(T:调速型;C:传动装置)
偶合器
液力注:上述型号说明为本企业标准,完全符合国标的基本规定。
②技术参数(表一)
3.主要结构特点(图二)
液力偶合器结构如图二所示,主要由箱体、旋转组件、供油组件、排油组件、勺管拖动调速装置、仪表系统、加热器、冷却器等组成。
①旋转组件
输入侧——输入轴、背壳、泵轮、外壳
输出侧——涡轮、输出轴
旋转组件的输入部分采用简支梁结构形式支撑在箱体上;输出部分也采用简支梁结构,一端支撑在输入组件中,另一端支承在箱体上。
这种液力偶合器其泵轮与涡轮间的轴向力通过埋入轴承平衡,它即不对外输出轴向力,也不应承受外来的轴向载荷,液力偶合器的泵轮和涡轮均布有一定数量的径向直叶片。
④勺管拖动调速装置
由拖动勺管的连杆机构和电动执行器及电动操作器组成。
⑤仪表系统
由随机显示仪表、传感元件(选装)、二次仪表(选装)构成
⑥加热器
当工作油温度低于5℃(用N46油时为10℃)时,应采用电加热器加热,当工作油温度高于5℃时(用N46油时为10℃)应停止加热(选装)
⑦冷却器
调速型液力偶合器在运行过程中存在一定的转差,该转差使工作油发热,需要用油/水或油/空热交换器对工作油进行冷却。
偶合器箱体上留有两个工作油进、出油法兰用来与热交换器管路联接(选装)
4.工作原理
当电机通过液力偶合器输入轴驱动泵轮旋转时,进入泵轮里的油在叶片的带动下因离心作用由泵轮内侧流向外缘,形成高压高速液流冲向涡轮叶片,使涡轮跟随泵轮作同向旋转,油在涡轮中由外缘流向内侧减压减速,然后流入泵轮。
在这种循环过程中泵轮将电机的机械能转变成油的动能和势能,而涡轮将油的动能和势能又转变成输出轴的机械能,从而实现能量的柔性传递。
由于泵轮与转动外壳相连,因此运转时,外壳腔中的油随转动外壳一起以与泵轮相同的转速旋转,这样,可以通过改变外壳腔中勺管的位置来控制腔内油环的厚度,即改变工作腔中的油量,就可以在电机转速不变的条件下实现工作机的无级调速。
主题内容与适用范围
本标准规定了液力偶合器的结构型式、循环圆有效直径与基本性能参数。
本标准适用于冶金、矿山、电力、起重运输、工程建筑、造船、石油、化工、轻工和建材等行业设备用的各类液力偶合器。
2型式
2.1基本型式
a.普通型液力偶合器;
b.限矩型液力偶合器;
c.调速型液力偶合器。
2.2派生型式
a.液力偶合器传动装置;
b.液力减速器。
2.3型号
液力偶合器型号表示如下:
表 1
2.4标记示例
循环圆有效直径560mm的出口调节式调速型液力偶合器,表示为:
液力偶合器YOTC560 GB/T 5837
3基本参数
3.1循环圆有效直径
液力偶合器循环圆有效直径应符合表2的规定。
注:①括号内为不推荐参数。
②液力偶合器传动装置循环圆有效直径除应符合表2的规定外,亦可采用422、4
63、510三参数。
3.2基本性能参数
在雷诺数Re≥5×106条件下,液力偶合器的基本性能参数应符合表3与表4的规定。
注:q c—充液率,即充入液力元件的工作液体容积与腔体容积之比。
雷诺数Re与泵轮力矩系数λβ的计算见附录A(参考件)。
附录A
雷诺数Re与泵轮力矩系数λβ的计算
(参考件)
A1雷诺数按式(A1)计算
(A1) 式中n B——泵轮转速,r/min;
D——循环圆有效直径,m;
ν——工作液体运动粘度,m2/s。
A2泵轮力矩系数按式(A2)计算
(A2) 式中M B——泵轮力矩,N·m;
——工作液体密度,kg/m3;
g——重力加速度,m/s2;
n B——泵轮转速,r/min;
D——循环圆有效直径,m。