液力偶合器与电机尺寸
- 格式:doc
- 大小:39.50 KB
- 文档页数:2
液力耦合器液力耦合器液力耦合器fluid coupling以液体为工作介质的一种非刚性联轴器﹐又称液力联轴器。
液力耦合器(见图液力耦合器简图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔﹐泵轮装在输入轴上﹐涡轮装在输出轴上。
动力机(内燃机﹑电动机等)带动输入轴旋转时﹐液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转﹐将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮﹐形成周而复始的流动。
液力耦合器靠液体与泵轮﹑涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩﹐所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系﹐工作构件间不存在刚性联接。
液力耦合器的特点是﹕能消除冲击和振动﹔输出转速低于输入转速﹐两轴的转速差随载荷的增大而增加﹔过载保护性能和起动性能好﹐载荷过大而停转时输入轴仍可转动﹐不致造成动力机的损坏﹔当载荷减小时﹐输出轴转速增加直到接近于输入轴的转速﹐使传递扭矩趋于零。
液力耦合器的传动效率等于输出轴转速与输入轴转速之比。
一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。
液力耦合器的特性因工作腔与泵轮﹑涡轮的形状不同而有差异。
它一般靠壳体自然散热﹐不需要外部冷却的供油系统。
如将液力耦合器的油放空﹐耦合器就处于脱开状态﹐能起离合器的作用。
变频器调速与液力耦合器调速的优缺点比较(一)[摘要]在风机,水泵类负载进行调速节能,先期应用的液力耦合器较多,高压变频器技术成熟后,也越来越多地得到了应用。
对于这两种调速节能的装置进行其优缺点的比较,提高对调速节能领域的了解。
[关键词]调速变频器液力耦合器一、引言风机、水泵是量大面广的普通机械,其耗电量占发电总量的30%左右,而高压电机拖动的大中型风机水泵的耗电量约占风机水泵耗电总量的50%。
目前大中型风机水泵基本上采用档板或阀门来调节风量或流量,以满足负荷变化的要求,其浪费电能相当严重,如若采用改变电机转速来实现调节风量或流量,无疑对节约能源,提高设备工作效率意义非常重大。
液力耦合器液力耦合器又称液力联轴器,是一种用来将动力源(通常是发动机或电机)与工作机连接起来,靠液体动量矩的变化传递力矩的液力传动装置。
液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。
液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
基本信息•中文名:液力耦合器•外文名:Fluid Coupling•优点:起步平稳,减少冲击等介绍液力耦合器又称液力联轴器,是一种用来将动力源(通常是发动机或电机)与工作机连接起来传递旋转动力的机械装置。
曾应用于汽车中的自动变速器,在海事和重工业中也有着广泛的应用。
液力耦合器正在加载电厂用液力耦合器动态模拟以液体为工作介质的一种非刚性联轴器,又称液力联轴器。
液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮,形成周而复始的流动。
液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。
液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。
液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。
液力偶合器一、设备概述;液力耦合器是安装在电动机与泵之间的一种传递部件,从电机至液力偶合器和偶合器至水泵之间是采用绕性联轴器连接,而偶合器与一般的联轴器不同之处是,它是通过工作油来传递和转换能量的。
它主要由主动轴、泵轮、涡轮、从动轴以及防止漏油的旋转内套等组成,泵轮与涡轮分别装在主动轮和从动轮上,它们之间无机械联系。
旋转外套在其外缘法兰处用螺栓与泵轮相连接。
泵轮与涡轮的轴心线相重合,内腔相对布置,两轮侧板的内腔形状和几何尺寸相同,轮内装有许多径向辐射形叶片,两轮端面留有适当的间隙。
构成一个液流通道,叫工作腔,工作腔的轴面投影称为流道。
运转时,在夜里偶合器中充满工作油,当主动轮带动泵轮回转时,泵轮流道中的工作油因离心力的作用,沿着径向流道由泵轮内侧(进口)流向外缘(出口)形成高压高速油。
在出口处以径向相对速度与泵轮出口圆周速度形成合速,冲入涡轮的进口径向流道,并沿着流道由工作油动量矩的改变去推动涡轮,使其跟随泵轮作同方向旋转。
但它们的转速不可能完全相同,因液体不具有刚性,假使它们在同一转数下旋转,则工作油就不会再冲击涡轮,因而就不会发生动力传递。
一般泵轮与涡轮的转差率为3%-4% 。
油在涡轮流道中由外缘(入口)流向内侧(出口)的过程中减压减速,在出口中又以径向相对速度与涡轮出口圆周形成合速。
冲入泵轮的进口径向流道,重新在泵轮中获得能量。
如此周而复始,构成工作油在泵轮和涡轮两者间的自然环流。
在这种循环中,泵轮将输入的机械功转化为工作油的动能和压力能,而涡轮则将工作油的动能和势能转换为输出的机械功。
从而实现电动机到水泵之间的动力传递。
工作油越多,则传递的动力愈大,也就增加了涡轮的传递。
而工作油减少时,情况正与上述相反。
工作油量靠勺管来调节的,二、液力偶合器构造现以德国voith公司生产的R15K-2.E型液力偶合器为例,主要部件有;箱体、传动齿轮和轴、液力偶合器、轴承、油泵、勺管调节装置、冷油器、油滤网等。
液力偶合器一、设备概述;液力耦合器是安装在电动机与泵之间的一种传递部件,从电机至液力偶合器和偶合器至水泵之间是采用绕性联轴器连接,而偶合器与一般的联轴器不同之处是,它是通过工作油来传递和转换能量的。
它主要由主动轴、泵轮、涡轮、从动轴以及防止漏油的旋转内套等组成,泵轮与涡轮分别装在主动轮和从动轮上,它们之间无机械联系。
旋转外套在其外缘法兰处用螺栓与泵轮相连接。
泵轮与涡轮的轴心线相重合,内腔相对布置,两轮侧板的内腔形状和几何尺寸相同,轮内装有许多径向辐射形叶片,两轮端面留有适当的间隙。
构成一个液流通道,叫工作腔,工作腔的轴面投影称为流道。
运转时,在夜里偶合器中充满工作油,当主动轮带动泵轮回转时,泵轮流道中的工作油因离心力的作用,沿着径向流道由泵轮内侧(进口)流向外缘(出口)形成高压高速油。
在出口处以径向相对速度与泵轮出口圆周速度形成合速,冲入涡轮的进口径向流道,并沿着流道由工作油动量矩的改变去推动涡轮,使其跟随泵轮作同方向旋转。
但它们的转速不可能完全相同,因液体不具有刚性,假使它们在同一转数下旋转,则工作油就不会再冲击涡轮,因而就不会发生动力传递。
一般泵轮与涡轮的转差率为3%-4% 。
油在涡轮流道中由外缘(入口)流向内侧(出口)的过程中减压减速,在出口中又以径向相对速度与涡轮出口圆周形成合速。
冲入泵轮的进口径向流道,重新在泵轮中获得能量。
如此周而复始,构成工作油在泵轮和涡轮两者间的自然环流。
在这种循环中,泵轮将输入的机械功转化为工作油的动能和压力能,而涡轮则将工作油的动能和势能转换为输出的机械功。
从而实现电动机到水泵之间的动力传递。
工作油越多,则传递的动力愈大,也就增加了涡轮的传递。
而工作油减少时,情况正与上述相反。
工作油量靠勺管来调节的,二、液力偶合器构造现以德国voith公司生产的R15K-2.E型液力偶合器为例,主要部件有;箱体、传动齿轮和轴、液力偶合器、轴承、油泵、勺管调节装置、冷油器、油滤网等。
液力耦合器使用、维护、点检标准一、液力耦合器工作原理及特点1.液力耦合器工作原理液力耦合器由泵轮、涡轮、转动外壳、勺管等组成。
泵轮和涡轮对称布置,中间保持一定间隙,轮内有几十片径向辐射的叶片,运转时在偶合器中充油,当输入轴带动泵轮旋转时,进入泵轮的油在叶片带动下,因离心力作用由泵轮内侧流向外缘,形成高压高速流冲向涡轮叶片,使涡轮跟随泵轮作同向旋转,油在涡轮中由外缘流内侧被迫减压减速,然后流入泵轮,在这种循环中,泵轮将原动机的机械能转变成油的动能和势能,而涡轮则将油的动能和势能又转变成输出轴的机械能,从而实现能量的柔性传递。
液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。
2.液力耦合器的特点能消除冲击和振动;输出转速低於输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近於输入轴的转速,使传递扭矩趋於零。
液力耦合器的传动效率等於输出轴转速与输入轴转速之比。
二、液力耦合器安装使用维护点检标准1. 液力耦合器安装要求:液力耦合器与工作端联接配合为动配合(间隙配合),间隙在0.02~0.03mm;同轴度平行度偏差:四极电机<0.4mm,六极电机<0.6mm.安装时禁止用工具直接敲打铸铝件表面,禁止用加热法进行安装。
2.工作介质及加油标准(1)工作介质推荐使用32号汽轮机油、6号液力传动油、8号液力传动油;(2)加油量:加油范围为耦合器总容积的40~80%,不允许超出此范围,更不允许充满。
加油量少于容积的40%,设备转速低,提不起来,产生噪音,轴承润滑不足磨损;加油量超出容积80%,耦合器转动时,因过载而急剧升温升压,工作液体积膨胀,耦合器内压增大,破坏密封,引起漏液,甚至造成耦合器壳体开裂、机械损坏;(3)加油方法:加油时要同时拧下加油塞和易熔塞,用80~100目的滤网过滤;加油后拧上易熔塞,慢慢转动偶合器开始有油液溢出并对准基准刻度线(注油塞口至距垂直中心线最高点约55度,没有的要重新确定),拧紧加油塞。
液力耦合器与电机的装配步骤概述说明1. 引言1.1 概述液力耦合器是一种常见的机械装置,它主要用于将传动能量从一个轴传输到另一个轴。
而电机则是一种将电能转化为机械能的设备。
液力耦合器与电机的装配步骤非常重要,对于确保机械设备的正常运行具有关键作用。
本文将详细介绍液力耦合器与电机的装配步骤及相关注意事项和常见问题解决办法。
通过了解液力耦合器组成部分、电机安装准备工作以及液力耦合器与电机的连接方法,读者可以全面理解如何正确安装液力耦合器和电机,并且能够应对可能遇到的问题。
1.2 文章结构本文共分为五个部分:引言、液力耦合器与电机的装配步骤、装配步骤详解、注意事项及常见问题解决办法以及结论。
在引言部分,我们首先介绍了液力耦合器与电机的背景和重要性,并说明了本文所要讨论的内容。
在第二部分中,我们将详细介绍液力耦合器组成部分的功能和特点,以及电机安装前的准备工作。
第三部分将详细讲解液力耦合器与电机的连接方法,并给出具体的装配步骤。
在第四部分,我们将列举一些注意事项,帮助读者避免常见的错误操作,并提供一些常见问题的解决办法。
最后,在结论中,我们将总结液力耦合器与电机的装配流程和重要步骤,并展望液力耦合器与电机应用的前景。
1.3 目的本文旨在向读者提供一个全面、清晰的指南,以帮助他们正确地进行液力耦合器与电机的装配。
通过阅读本文,读者将了解到每个步骤的详细操作流程,掌握相关技巧和注意事项,并能够解决可能出现的常见问题。
我们希望通过这篇文章,读者能够更加熟悉液力耦合器与电机装配过程,并为今后实际应用提供有益参考。
2. 液力耦合器与电机的装配步骤2.1 液力耦合器组成部分介绍液力耦合器是由泵轮、涡轮和导向叶片等组成的。
其中,泵轮由驱动电机带动,产生高速旋转;而涡轮则通过传递液体动能来驱动负载。
导向叶片位于泵轮和涡轮之间,用于引导流体在两者之间的转移。
2.2 电机安装准备工作在开始装配液力耦合器和电机之前,必须先进行一些准备工作。