2017-2018学年度天津市和平区中考数学试卷(含答案)
- 格式:doc
- 大小:2.18 MB
- 文档页数:8
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于( )A .2B .﹣2C .8D .﹣82.(3分)cos60°的值等于( )A .√3B .1C .√22D .123.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡张.将用科学记数法表示为( )A .0.1263×108B .1.263×107C .12.63×106D .126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.(3分)计算a a+1+1a+1的结果为( ) A .1 B .a C .a +1 D .1a+18.(3分)方程组{y =2x 3x +y =15的解是( )A .{x =2y =3B .{x =4y =3C .{x =4y =8D .{x =3y =69.(3分)如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD=∠EB .∠CBE=∠C C .AD ∥BC D .AD=BC10.(3分)若点A (﹣1,y 1),B (1,y 2),C (3,y 3)在反比例函数y =−3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 311.(3分)如图,在△ABC 中,AB=AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 最小值的是( )A .BCB .CEC .AD D .AC12.(3分)已知抛物线y=x 2﹣4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( )A .y=x 2+2x +1B .y=x 2+2x ﹣1C .y=x 2﹣2x +1D .y=x 2﹣2x ﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x 7÷x 4的结果等于 .14.(3分)计算(4+√7)(4−√7)的结果等于 .15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
天津市和平区2017-2018学年八年级上期中数学试题及答案天津市和平区2017-2018学年度八年级上期期中数学试题第I 卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、下列标志中,可以看作是轴对称图形的是()2、下列长度的三条线段能组成三角形的是()A .2,3,4B .3,6,11C .4,6,10D .5,8,143、如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA 。
连接BC并延长到E ,使CE =CB 。
连接DE ,那么量出DE 的长就是A 、B 的距离。
我们可以证明△ABC ≌△DEC ,进而得出AB =DE 。
那么判定△ABC 和△DEC 全等的依据是()A .SSSB .SASC .ASAD .AAS4、如果n 边形的内角和是它外角和的3倍,则n 等于()A .6B .7C .8D .95、如图,以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画出射线OB ,则∠AOB =()A .30°B .45°C .60°D .90°6、如图,在等腰△ABC 中,AB =AC ,BD ⊥AC ,∠ABC =72°,则∠ABD =()A .18°B .36°C .54°D .64°7、如图,△ABC 的两个外角的平分线相交于点P ,则下列结论正确的是()A .BP 平分∠APCB .BP 平分∠ABC C .BA =BCD .PA =PC第5题图第6题图第7题图第8题图8、某地地震过后,河沿村中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们由此确信房梁是水平的,他们判定的依据是()A .等边对等角B .等角对等边C .等腰三角形底边上的中线和底边上的高重合D .等腰三角形顶角平分线与底边上的中线重合9、如图,∠1=60°,则∠A +∠B +∠C +∠D +∠E +∠F =()A .240°B .280°C .360°D .540°10、△ABC 中,AB =AC ,点D 、E 分别在边AC 、BC 上,且AD =AE ,∠BAE =30°,则∠DEC =()A .12°B .15°C .18°D .30°11、如图,在△ABC 中,AB =AC ,AD 是△ABC 的中线,E 是AB 上一点,P 是AD 上的一个动点,则下列线段的长等于BP +EP 的最小值的是()A .BC B .AD C .AC D .CE 12、如图,在Rt △ABC 中,∠BAC =90°,AB =3,M 为边BC 上的点,连接AM 。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C. D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB :S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣3)+5的结果等于()A.2B.﹣2C.8D.﹣82.cos60°的值等于()A.√3B.1C.√22D.123.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计√38的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算+1+1??+1的结果为()A.1B.a C.a+1D.1 +18.方程组{=2??3??+??=15的解是()A.{=2=3B.{??=4??=3C.{??=4??=8D.{??=3??=69.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=-3的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3 11.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1B.y=x2+2x﹣1C.y=x2﹣2x+1D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.计算x7÷x4的结果等于.14.计算(4+√7)(4-√7)的结果等于.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD 上,P为AE的中点,连接PG,则PG的长为.18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。
1cos60=.2【解析】3638<【解析】ABC △绕点60得DBE △60,AB 三角形,60DAB ∴∠=,DAB CBE ∴∠=∠,AD BC ∴∥.60,AB 【解析】30k =-<,10y >,【提示】根据反比例函数的性质判断即可【考点】反比例函数的图象和性质,AB AC =+≥,∴P、C、E共线时,PB PEPE PC CE+的值最小,最小值为CE的长度.,平移该抛物线,使点【解析】共【解析】若正比例函数.P直角45,∴△11EG=+【提示】(1)利用勾股定理即可解决问题;(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.【考点】勾股定理,平行线的性质,平行四边形的性质,三角形的面积三、解答题19.【答案】(1)解不等式①,得1x ≥;(2)解不等式②,得3x ≤;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为13x ≤≤.【提示】(1)移项、合并同类项即可求得答案;(2)移项、合并同类项、系数化为1即可求得答案;(3)根据不等式解集在数轴上的表示方法,画出即可;(4)根据各不等式解集在数轴上的表示,由公共部分即可确定不等式组的解集.【考点】解不等式组20.【答案】(1)4030(2)平均数为15众数为16中位数为15【解析】(1)410%40÷=(人),10027.5257.51030m =----=;(2)平均数(134141015111612173)4015=⨯+⨯+⨯+⨯+⨯÷=,16出现12次,次数最多,众数为16;按大小顺序排列,中间两个数都为15,中位数为15.【提示】(1)÷=频数所占百分比样本容量,10027.5257.51030m =----=;(2)根据平均数、众数和中位数的定义求解即可.【考点】统计的初步知识运用21.【答案】(1)40T ∠=40CDB ∠=(2)15CDO ∠=【解析】(1)如图①,连接AC ,AT 是⊙O 切线,AB 是⊙O 的直径,AT AB ∴⊥,即90TAB ∠=,50ABT ∠=,9040T ABT ∴∠=-∠=;由AB 是⊙O 的直径,得90ACB ∠=,9040CAB ABC ∴∠=-∠=,40CDB CAB ∴∠=∠=;(2)如图②,连接AD ,在BCE △中,BE BC =,50EBC ∠=,65BCE BEC ∴∠=∠=,65BAD BCD ∴∠=∠=,OA OD =,65ODA OAD ∴∠=∠=,50ADC ABC ∠=∠=,655015CDO ODA ADC ∴∠=∠-∠=-=.【提示】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得90TAB ∠=,根据三角形内角和得T ∠的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得CDB ∠的度数;(2)如图②,连接AD ,根据等边对等角得65BCE BEC ∠=∠=,利用同圆的半径相等知OA OD =,同理65ODA OAD ∠=∠=,由此可得结论.【考点】圆的切线性质,三角形的内角和定理,圆的相关性质,等腰三角形的性质22.【答案】BP 的长为153海里BA 的长为161海里64,45B ∠,PA sin120sin64PA A =,cos 120cos64AC PA A =;PCB 中,45B ∠=,PC BC ∴,1200.901534522PC ⨯=≈120cos64120sin641200.90+≈⨯所以BP 的长为153海里,BA 的长为161海里.)点A B OB '⊥90,在Rt A OB '△2OA OB '-∴P 60,180120BPO ∴∠∠=-,120OPA '=∠,180,OB ∴,又OB PA =,∴四边形OPA A B OP '=3)设(P x45, (,)P x y ,32P ⎛-∴ ⎝30,OA 30BPA '∠=,∴∠OA AP '∴∥PA '∥∴四边形OAPA 30A ∠=,PM ∴把32y =30时,点60,求出120,由折叠的性质得:120,PA',得出四边形OPA是平行四边形,即可得出45,30,OA)抛物线2=y x-(2)①由点点抛物线的顶点坐标为PA-,,(10)2(P A'∴=m>,∴m的值为11 / 11。
2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算5)3(+-的结果等于( )A .2B .2-C .8D .8- 2.060cos 的值等于( ) A 3 B .1 C .22 D .21 3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯ B .710263.1⨯ C .61063.12⨯ D .5103.126⨯ 5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计38的值在( )A .4和5之间B .5和6之间 C. 6和7之间 D .7和8之间 7.计算111+++a a a 的结果为( )A .1B .a C. 1+a D .11+a 8.方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x9.如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 10.若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( ) A .321y y y << B .132y y y << C. 123y y y << D .312y y y <<11.如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12.已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x y D .122--=x x y 二、填空题13.计算47x x ÷的结果等于 .14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上. (1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题19.解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小.①②22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 0≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式; (3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A . (1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.11。
天津市和平区2017年中考数学《旋转》专题练习含答案(50题)旋转50题⼀、选择题:1.下列图形中,既是轴对称图形⼜是中⼼对称图形的是()A B C D2.如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50° B.60° C.40° D.30°3.下列图形既是轴对称图形⼜是中⼼对称图形的是( )4.下列图案中,可以看做是中⼼对称图形的有()A.1个B.2个C.3个D.4个5.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.6.在平⾯直⾓坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33B.﹣33C.﹣7D.77.下列各点中关于原点对称的两个点是()A.(﹣5,0)和(0,5)B.(2,﹣1)和(1,﹣2)C.(5,0)和(0,﹣5)D.(﹣2,﹣1)和(2,1)8.如图,在△ABC中,∠CAB=90°,将△ABC绕点A顺时针旋转60°得△ADE,则∠EAB的度数为()A.20° B.25° C.28° D.30°9.下列图形中,既是轴对称图形⼜是中⼼对称图形的是()10.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的⽅向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转⼀定⾓度后,点B′恰好与点C重合,则平移的距离和旋转⾓的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°11.下⾯的图形中,既是轴对称图形⼜是中⼼对称图形的是()12.下列图形中,是中⼼对称图形的是()A. B. C. D.13.下列四个说法,其中说法正确的个数是()①图形旋转时,位置保持不变的点只有旋转中⼼;②图形旋转时,图形上的每⼀个点都绕着旋转中⼼旋转了相同的⾓度;③图形旋转时,对应点与旋转中⼼的距离相等;④图形旋转时,对应线段相等,对应⾓相等,图形的形状和⼤⼩都没有发⽣变化A.1个B.2个C.3个D.4个14.正⽅形ABCD在坐标系中的位置如图所⽰,将正⽅形ABCD绕C点顺时针⽅向旋转90°后,A点的坐标为()A.(,0)B.(0,7)C.(,1)D.(7,0)15.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6 C.2 D.316.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直⾓顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C. D.π17.在等边△ABC中,D是边AC上⼀点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三⾓形D.△ADE的周长是918.如图,边长为1的正⽅形ABCD绕点A逆时针旋转45°得到正⽅形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD 的⾯积是( )A. B. C.-1 D.19.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直⾓边AC绕A点逆时针旋转⾄AC′,连接BC′,E为BC′的中点,连接CE,则CE的最⼤值为()A. B. +1 C. +1 D. +120.如图,正⽅形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为( )A.2B.3C.D.⼆、填空题:21.请写出⼀个既是轴对称图形⼜是中⼼对称图形的平⾯图形,你所写的平⾯图形名称是.(写⼀个即可)22.如图所⽰,在平⾯直⾓坐标系中,△OAB三个顶点的坐标O(0,0)、A(3,4)、B(5,2).将△OAB绕原点O 按逆时针⽅向旋转90°后得到△OA1B1,则点A1的坐标是.23.在图形的平移、旋转、轴对称变换中,其相同的性质是.24..如图,直线y=-x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO/B/,则点B′的坐标是.25.如图,将Rt△ABC绕直⾓顶点顺时针旋转90°,得到△A′B′C,连接AA′,若∠AA′B′=20°,则∠B的度数为__ __.(导学号02052551)26.如图,在平⾯直⾓坐标系中,三⾓形②是由三⾓形①绕点P旋转后所得的图形,则旋转中⼼P的坐标是________.27.如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′= .28.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b= .29.P是等边△ABC内部⼀点,∠APB、∠BPC、∠CPA的⼤⼩之⽐是5:6:7,将△ABP逆时针旋转,使得AB与AC重合,则以PA、PB、PC的长为边的三⾓形的三个⾓∠PCQ:∠QPC:∠PQC= .30.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转⾓等于31.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直⾓顶点C顺时针旋转90°得到△DEC.若点F 是DE的中点,连接AF,则AF= .32.如图,△ABC 中,已知∠C=90°,∠B=55°,点D 在边BC 上,BD=2CD .把△ABC 绕着点D 逆时针旋转m (033.如图所⽰,正⽅形ABCD 的⾯积为12,ABE △是等边三⾓形,点E 在正⽅形ABCD 内,在对⾓线AC 上有⼀点P ,使PD PE 的和最⼩,则这个最⼩值为 .34.如图,正⽅形ABCD 绕点B 逆时针旋转30°后得到正⽅形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K.若正⽅形ABCD 边长为,则AK=__ __.35.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=,将△ABC 绕点C 逆时针旋转60°,得到△MNC,连接BM ,则BM 的长是.36.如图,在△ABC 中,AB=AC=5,BC=6,将△ABC 绕点C 顺时针⽅向旋转⼀定⾓度后得到△A ′B ′C .若点A ′恰好落在BC 的延长线上,则点B ′到BA ′的距离为.37.如图,四边形ABCD 中,AB=3,BC=2,若AC=AD 且∠ACD=60°,则对⾓线BD 的长最⼤值为.A DEPBC38.如图,O 是等边△ABC 内⼀点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中⼼逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB=150°;④四边形AOBO ′的⾯积为6+3;⑤S △AOC +S △AOB =6+43.其中正确的结论是_ _.39.如图,P 是等边三⾓形ABC 内⼀点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若PA=6,PB=8,PC=10,则四边形APBQ 的⾯积为.40.如图,在平⾯直⾓坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进⾏下去….若点A (1.5,0),B (0,2),则点B 2016的坐标为.三、解答题:41.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB >1.以A 为中⼼顺时针旋转点M ,以B 为中⼼逆时针旋转点N ,使M 、N 两点重合成⼀点C ,构成△ABC ,设AB=x .(1)求x 的取值范围;(2)若△ABC 为直⾓三⾓形,求x 的值.42.△ABC 在直⾓坐标系中的位置如图所⽰,直线l 经过点(-1,0),并且与y 轴平⾏.(1)①将△ABC 绕坐标原点O 顺时针旋转90°得到△A 1B 1C 1,在图中画出△A 1B 1C 1;②求出由点C 运动到点C 1所经过的路径的长.(2)①△A 2B 2C 2与△ABC 关于直线l 对称,画出△A 2B 2C 2,并写出△A 2B 2C 2三个顶点的坐标;②观察△ABC 与△A 2B 2C 2对应点坐标之间的关系,写出直⾓坐标系中任意⼀点P (a ,b )关于直线l 的对称点的坐标:.43.如图,正⽅形ABCD 中,点F 在边BC 上,E 在边BA 的延长线上.(1)若D C F △按顺时针⽅向旋转后恰好与DAE △重合.则旋转中⼼是点;最少旋转了度;(2)在(1)的条件下,若3,2AE BF ==,求四边形BFDE 的⾯积.DC FB E A44.(1)如图1,点P是正⽅形ABCD内的⼀点,把△ABP绕点B顺时针⽅向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三⾓形ABC内的⼀点,若PA=12,PB=5,PC=13,求∠BPA的度数.45.探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直⾓,把△ABE绕点A逆时针旋转90°⾄△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;②如图2,若∠B、∠D都不是直⾓,则当∠B与∠D满⾜数量关系时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE长.46.在△ABC中,AB=AC,∠BAC=ɑ(0°<ɑ<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的⼤⼩(⽤含α的式⼦表⽰);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求ɑ的值.47.如图,O是等边△ABC内⼀点,OA=3,OB=4,OC=5,将线段BO绕点B逆时针旋转60°得到线段BO′. (1)求点O与O′的距离;(2)证明:∠AOB=150°;(3)求四边形AOBO′的⾯积.(4)直接写出△AOC与△AOB的⾯积和。
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前天津市2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(3)5-+的结果等于( ) A .2B .2-C .8D .8- 2.cos60的值等于( )AB .1 CD .123.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .80.126310 ⨯ B .71.26310⨯ C .612.6310⨯ D .5126.310⨯ 5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.计算111a a a +++的结果为( )A .1B .aC .1a +D .11a + 8.方程组2,315y x x y =⎧⎨+=⎩的解是( )A .2,3x y =⎧⎨=⎩B .4,3x y =⎧⎨=⎩C .4,8x y =⎧⎨=⎩D .3,6x y =⎧⎨=⎩9.如图,将ABC △绕点B 顺时针旋转60得DBE △,点C 的对应点E 恰好落在AB 的延长线上,连接AD .下列结论一定正确的是 ( )A .ABD E ∠=∠B .CBEC ∠=∠ C .AD BC ∥ D .AD BC =10.若点1(1,)A y -,2(1,)B y ,3(3,)C y 在反比例函数3y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .231y y y <<C .321y y y <<D .213y y y <<11. 如图,在ABC △中,AB AC =,AD ,CE 是ABC △的两条中线,P 是AD 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .BCB .CEC .ADD .AC12.已知抛物线243y x x =-+于x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为( )A .221y x x =++B .221y x x =+-ABCDABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)C .221y x x =-+D .221y x x =--第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.计算74xx ÷的结果等于 .14.计算(4的结果等于 .15.不透明袋子中装有6个球,其中有5个红球,1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ; (2)在ABC △的内部有一点P ,满足::1:2:3PAB PBC PCA S S S =△△△,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解不等式组12,54 3.x x x +⎧⎨+⎩≥①≤②请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为 . 20.(本小题满分8分)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:图1 图2(1)本次接受调查的跳水运动员人数为 ,图1中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数. 21.(本小题满分10分)已知AB 是O 的直径,AT 是O 的切线,50ABT ∠=,BT 交O 于点C ,E 是AB上一点,延长CE 交O 于点D .图1图2(1)如图1,求T ∠和CDB ∠的大小;(2)如图2,当BE BC =时,求CDO ∠的大小.22.(本小题满分10分)如图,一艘海轮位于灯塔P 的北偏东64方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:sin 640.90≈,cos640.44≈,tan 64 2.05≈1.414.数学试卷 第5页(共28页) 数学试卷 第6页(共28页)23.(本小题满分10分)用A4纸复印文件.在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)(2)1212关于x 的函数关系式;(3)当70x >时,顾客在哪家复印店复印花费少?请说明理由.24.(本小题满分10分)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点A ,点(0,1)B ,点(00)O ,.P 是边AB 上的一点(点P 不与点A ,B 重合),沿着OP 折叠该纸片,得点A 的对应点A '.图1 图2(1)如图1,当点A '在第一象限,且满足A B OB '⊥时,求点A '的坐标; (2)如图2,当P 为AB 中点时,求A B '的长;(3)当30BPA '∠=时,求点P 的坐标(直接写出结果即可).25.(本小题满分10分)已知抛物线23y x bx =+-(b 是常数)经过点(1,0)A -. (1)求该抛物线的解析式和顶点坐标;(2)(,)P m t 为抛物线上的一个动点,P 关于原点的对称点为P '. ①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,2P A '取得最小值时,求m 的值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共28页)数学试卷 第8页(共28页)1cos602=. 【解析】36<【解析】ABC△绕点60得DBE△60,AB 三角形,60DAB∴∠=,DAB CBE∴∠=∠,AD BC∴∥.60,AB【解析】3k=-<,1y>,【提示】根据反比例函数的性质判断即可,AB AC=5 / 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)PE PC CE +≥,∴P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.,平移该抛物线,使点【解析】共【解析】若正比例函数.P直角45,∴△EG+=7 / 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)22(3)把不等式①和②的解集在数轴上表示出来:9 / 14大小顺序排列,中间两个数都为15,中位数为15.【提示】(1)÷=频数所占百分比样本容量,10027.5257.51030m =----=; (2)根据平均数、众数和中位数的定义求解即可. 【考点】统计的初步知识运用 21.【答案】(1)40T ∠=40CDB ∠= (2)15CDO ∠=【解析】(1)如图①,连接AC , AT 是⊙O 切线,AB 是⊙O 的直径,AT AB ∴⊥,即90TAB ∠=,50ABT ∠=,9040T ABT ∴∠=-∠=; 由AB 是⊙O 的直径,得90ACB ∠=,9040CAB ABC ∴∠=-∠=, 40CDB CAB ∴∠=∠=; (2)如图②,连接AD ,在BCE △中,BE BC =,50EBC ∠=,65BCE BEC ∴∠=∠=,65BAD BCD ∴∠=∠=,OA OD =,65ODA OAD ∴∠=∠=,50ADC ABC ∠=∠=,655015CDO ODA ADC ∴∠=∠-∠=-=.【提示】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得90TAB ∠=,根据三角形内角和得T∠的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得CDB ∠的度数;(2)如图②,连接AD ,根据等边对等角得65BCE BEC ∠=∠=,利用同圆的半径相等知OA OD =,同理65ODA OAD ∠=∠=,由此可得结论.【考点】圆的切线性质,三角形的内角和定理,圆的相关性质,等腰三角形的性质 22.【答案】BP 的长为153海里数学试卷 第20页(共28页)64,45B ∠,PAsin 120sin 64PA A =,cos 120cos64AC PA A =; PCB 中,45B ∠=,PC BC ∴,1200.901534522PC ⨯=≈120cos64120sin 641200.90+≈⨯所以BP 的长为153海里,BA 的长为161海里.)点A B OB '⊥90,在Rt A OB '△2'P 60,180120BPO ∴∠∠=-,120OPA '=,180,OB ∴,又OB PA =,∴四边形OPA A B OP '=3)设(P x45, (,)P x y ,32P ⎛-∴ 30,OA 30BPA '∠=,∴∠OA AP '∴∥PA '∥∴四边形OAPA 30A ∠=,PM ∴把32y =30时,点60,求出120,由折叠的性质得:120,PA,得出四边形是平行四边形,即可得出45,30,OA')抛物线2=y x-(2)①由点点抛物线的顶点坐标为PA-,,(10)2(∴=P A'm>,∴∴m的值为。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。
温馨提示:本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页.试卷满分120分.考试时间100分钟.祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.cos30°的值等于(A )12(B )22(C )32(D)12.如图是由5 个大小相同的正方体组成的几何体,则该几何体的主视图是3.反比例函数2yx=的图象在(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限4.如图,△ABC中,5AB=,3BC=,4AC=,以点C为圆心的圆与AB相切,则⊙C的半径为(A)2.3(B)2.4(C)2.5(D)2.65.今年某市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600㎡,设扩大后的正方形绿地边长为x m,下面所列方程正确的是(A)(60)1600x x-=(B)(60)1600x x+=(C)60(60)1600x+=(D)60(60)1600x-=6.从一个棱长为3的大正方体挖去一个棱长为1的小正方体,得到的几何体如图所示,则该几何体的左视图是7.边长相等的正三角形和正六边形的面积之比为(A)1∶3 (B)2∶3(C)1∶6 (D)1∶68.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是(A)12(B)13(C)29(D)16(A)(B)(C)(D)A BC主视方向(A)(B)(C)(D)x32ABC9.已知函数1y x=的图象如图所示,当x ≥-1时,y 的取值范围是 (A )y ≤-1或y >0 (B )y >0(C )y ≤-1或y ≥0 (D )-1≤y <010.如图,I 是△ABC 的内心,AI 的延长线和△ABC 的外接圆相交于点D ,连接BI ,BD ,DC .下列说法中错误的是(A )线段DB 绕点D 顺时针旋转一定能与线段DC 重合 (B )线段DB 绕点D 顺时针旋转一定能与线段DI 重合 (C )CAD ∠绕点A 顺时针旋转一定能与DAB ∠重合 (D )线段ID 绕点I 顺时针旋转一定能与线段IB 重合11.如图,已知△ABC , △DCE , △FEG ,△HGI 是4个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一条直线上,且2AB =,1BC =. 连接AI ,交FG 于点Q ,则QI =(A )1 (B )61(C )66(D )4312.二次函数)0(4)4(2≠--=a x a y 的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为 (A )1 (B )-1 (C )2 (D )-2第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔).2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 . 14.如图,直线y kx =与双曲线)0(2>=x x y 交于点A (1,a ),则k = .15.已知△ABC ∽△DEF ,若 △ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对 应中线的比为 .16.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F ,若ACF ∠=65°,则E ∠的大小= (度).17.在Rt △ABC 内有边长分别为2,x ,3的三个正方形如图摆放,则中间的正方形的边长x 的值为 .xyO1-1-O AxyABCD EOFHAB C D E F G HIQABCDI18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(Ⅰ)ABC △的面积等于 ;(Ⅱ)若四边形DEFG 是正方形,且点D ,E 在边CA 上,点F 在边AB 上,点G 在边BC 上,请在如图所 示的网格中,用无刻度...的直尺,画出点E ,点G ,并 简要说明点E ,点G 的位置是如何找到的(不要求证 明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) 19.(本小题8分)解方程(3)(2)40x x ---=.20.(本小题8分)求抛物线22y x x =+-与x 轴的交点坐标.21.(本小题10分)已知,△ABC 中,A ∠=68°,以AB 为直径的⊙O 与AC ,BC 的交点分别为D ,E , (Ⅰ)如图①,求CED ∠的大小;(Ⅱ)如图②,当DE BE =时,求C ∠的大小.22.(本小题10分)如图,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A ,B (不计大小),树干垂直于地面,量得2AB =m ,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO (结果精确到1m )(参考数据:3 1.73≈,2 1.41≈).23.(本小题10分)一位运动员推铅球,铅球运行时离地面的高度y (米)是关于运行时间x (秒)的二次函数.已知铅球刚出手时离地面的高度为35米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是 ;(Ⅱ)求这个二次函数的解析式和自变量x 的取值范围.BCD A OABCD E OABCDEO图① 图②ACB24.(本小题10分)在平面直角坐标系中,O 为坐标原点,点A (0,1),点C (1,0),正方形AOCD 的两条对角线的交点为B ,延长BD 至点G ,使DG BD =.延长BC 至点E ,使CE BC =,以BG ,BE 为邻边做正方形BEFG .(Ⅰ)如图①,求OD 的长及ABBG的值; (Ⅱ)如图②,正方形AOCD 固定,将正方形BEFG 绕点B 逆时针旋转,得正方形BE F G ''',记旋转角为α(0°<α<360°),连接AG '. ①在旋转过程中,当BAG '∠=90°时,求α的大小;②在旋转过程中,求AF '的长取最大值时,点F '的坐标及此时α的大小(直接写出结果即可).25.(本小题10分)已知抛物线2y ax bx c =++.(Ⅰ)若抛物线的顶点为A (-2,-4),抛物线经过点B (-4,0). ①求该抛物线的解析式;②连接AB ,把AB 所在直线沿y 轴向上平移,使它经过原点O ,得到直线l ,点P 是直线l 上一动点.设以点A ,B ,O ,P 为顶点的四边形的面积为S ,点P 的横坐标为x ,当462+≤S ≤682+时,求x 的取值范围;(Ⅱ)若a >0,c >1,当x c =时,0y =,当0<x <c 时,y >0,试比较ac 与1的大小,并说明理由.yxOABCD EFGyxOABCDE 'F 'G '图① 图②和平区2017-2018学年度第二学期九年级结课质量调查 数学学科试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.C 2.A 3.B 4.B 5.A 6.C 7.C 8.B 9.A 10.D 11.D 12.A 二、填空题(本大题共6小题,每小题3分,共18分)13.27 14.2 15.34 16.50° 17.518.(Ⅰ)6;(Ⅱ)如图,取格点K ,J ,连接KJ ,KJ 与AC 交于点E .取格点H ,I ,连接HI ,HI 与BC 交于点G .点E ,G 即为所求.三、解答题(本大题共7小题,共66分) 19.(本小题8分)解:方程化为2520x x -+= ……………………………1分1a =,5b =-,2c =.224(5)41217b ac ∆=-=--⨯⨯=>0.x ===. …………………………6分即1x =,2x =. …………………………8分 20.(本小题8分)解:令0y =,即220x x +-=. ……………………………2分 解得11x =,22x =-. ……………………………6分 ∴该抛物线与x 轴的交点坐标为(-2,0),(1,0). ……………………………8分 21.(本小题10分)解:(Ⅰ)∵四边形ABED 是圆内接四边形,∴A DEB ∠+∠=180°. ………………………………2分 ∵CED DEB ∠+∠=180°,∴CED A ∠=∠. ………………………………4分 ∵A ∠=68°,∴CED ∠=68°. ………………………………5分 (Ⅱ)连接AE , ………………………………6分∵DE BE =,∴»»DEBE =.7分 ∴1122DAE EAB CAB ∠=∠=∠=⨯68°=34°. ………………………………8分∵AB 为直径,∴AEB ∠=90°. ………………………………9分 ∴AEC ∠=90°.∴C ∠=90°-DAE ∠=90°-34°=56°. ……………………………10分 22.(本小题10分)解:设OC x =, 在Rt △AOC 中, ∵ACO ∠=45°, ∴CAO ∠=45°. ∴ACO CAO ∠=∠.∴OA OC x ==. …………………………3分 在Rt △BOC 中,tan OBBCO OC∠=, ∵BCO ∠=30°, ∴tan OB OC =g 30°=, …………………………6分 A CBK J H IEG由2AB OA OB x =-==,解得653 1.73x =≈≈-. …………………………9分答:C 处到树干DO 的距离CO 约为5 m . …………………………10分 23.(本小题10分)解:(Ⅰ)(0,35),(4,3),(10,0) …………………………3分(Ⅱ)根据题意,可设二次函数的解析式为2y ax bx c =++(0≠a ), 由这个函数的图象经过(0,35),(4,3),(10,0)三点. 得22443,10100,5.3a b c a b c c ⎧⎪++=⎪++=⎨⎪⎪=⎩g g g g 解这个方程组,得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=.35,32,121c b a …………………………8分所以,所求二次函数的解析式为35321212++-=x x y . ………………………9分 因为铅球从运动员掷出到落地所经过的时间为10秒,所以自变量的取值范围为 0≤x ≤10. …………………………10分24.(本小题10分)解:(Ⅰ)∵C (1,0), ∴1OC =.∵四边形AOCD 是正方形, ∴OCD ∠=90°,1CD OC ==.∴OD = ……………………………2分 ∵四边形AOCD 是正方形, ∴BD AB =. ∵DG BD =, ∴BD AB DG ==. ∴2BG AB =. ∴122AB AB BG AB ==. ……………………………3分 (Ⅱ)①在旋转过程中,BAG '∠=90°有两种情况:α由0°增大到90°过程中,当BAG '∠=90°时,∵正方形BE F G '''是由正方形BEFG 旋转得到的, ∴BG BG '=. 由(Ⅰ)得12AB BG =,∴12AB BG ='. 在Rt △ABG '中,1sin 2AB AG B BG '∠==', ∴AG B '∠=30°. ∴ABG '∠=60°.∵四边形AOCD 是正方形, ∴ABD ∠=90°. ∴G BD '∠=30°.即α=30°. ……………………………7分 如图,延长G A '至G '',使AG AG '''=,连接BG '',α由90°增大到180°过程中,当BAG ''∠=90同理,在Rt △ABG ''中,1sin 2AB AG B BG ''∠=='', ∴AG B ''∠=30°. ∴ABG ''∠=60°.P 'P "∴DBA ABG α''=∠+∠=90°+60°=150°. ……………………………8分 ②F '122+122-,α=315°. ……………………………10分25.(本小题10分)解:(Ⅰ)①设抛物线的解析式为2(2)4y a x =+-, ∵抛物线经过点B (-4,0), ∴20(42)4a =-+-. 解得1a =. 2(2)4y x =+-.∴该抛物线的解析式为24y x x =+. ……………………………2分 ②设直线AB 的解析式为y kx m =+, 由A (-2,-4),B (-4,0), 得42,04.k m k m -=-+⎧⎨=-+⎩解这个方程组,得2,8.k m =-⎧⎨=-⎩∴直线AB 的解析式为28y x =--. ∵直线l 与AB 平行,且过原点,∴直线l 的解析式为2y x =-. ………………… ………………3分 当点P 在第二象限时,x <0,如图,14(2)42POB S x x ∆=⨯⨯-=-.14482AOB S ∆=⨯⨯=,∴48POB AOB S S S x ∆∆=+=-+(x <0). …………………………4分 ∵462+S ≤682+∴462682S S ⎧+⎪⎨+⎪⎩≥≤4846248682x x ⎧-++⎪⎨-++⎪⎩≥≤ 142-x 232- ∴x 142-x 232- …………………………5分 当点P '在第四象限时,x >0,过点A ,P '分别作x 轴的垂线,垂足为A ',P '',则422P P O P OA A P P A A x S S S '''''∆''''+=-=四边形四边形·1(2)2x +-·(2)x ·44x x =+. ∵'14242AA B S ∆=⨯⨯=,∴''48P OA A AA B S S S x '∆=+=+四边形(x >0). …………………………6分 ∵462+S ≤682+ ∴462682S S ⎧+⎪⎨+⎪⎩≥≤4+84+6248682x x ⎧⎪⎨++⎪⎩≥≤, 322-x 421- ∴x 322-x 421- …………………………7分 (Ⅱ)∵当x c =时,0y =, ∴20ac bc c ++=. ∵c >1,∴10ac b ++=,1b ac =--. …………………………8分 由x c =时,0y =,知抛物线与x 轴的一个公共点为(c ,0). 把0x =代入2y ax bx c =++,得y c =. ∴抛物线与y 轴的交点为(0,c ). 由a >0知抛物线开口向上, 再由0<x <c 时,y >0, 知抛物线的对称轴2bx a=-≥c . ………………………………9分 ∴b ≤2ac -.由1b ac =--得1ac --≤2ac -.∴ac ≤1. ……………………………10分。