2013年台湾地区第十一届JHMC初中数学竞赛试题与简答
- 格式:doc
- 大小:172.50 KB
- 文档页数:7
102国民中学学生基本学力测验 数学题本时间2013年6月9日 8:50~10:00,共70分钟1. 计算12÷(-3)-2⨯(-3)之值为何? (A) -18 (B) -10 (C) 2 (D) 182. 小华班上比赛投篮,每人投6球,如图是班上所有学生投进球数 的饼图。
根据图,下列关于班上所有学生投进球数的统计量, 何者正确?(A) 中位数为3 (B) 中位数为2.5 (C) 众数为5 (D) 众数为23. k 、m 、n 为三整数,若135 =k 15 ,450 =15m ,180 =6n ,则下列有关于k 、m 、n 的大小关系,何者正确?(A) k <m =n (B) m =n <k (C) m <n <k (D) m <k <n4. 若一多项式除以2x 2-3,得到的商式为7x -4,余式为-5x +2,则此多项式为何? (A) 14x 3-8x 2-26x +14 (B) 14x 3-8x 2-26x -10 (C) -10x 3+4x 2-8x -10 (D) -10x 3+4x 2+22x -105. 附表为服饰店贩卖的服饰与原价对照表。
某日服饰店举办大拍 卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服 饰共卖出200件,共得24000元。
若外套卖出x 件,则依题意可 列出下列哪一个一元一次方程式? (A) 0.6⨯250x +0.8⨯125(200+x )=24000 (B) 0.6⨯250x +0.8⨯125(200-x )=24000 (C) 0.8⨯125x +0.6⨯250(200+x )=24000 (D) 0.8⨯125x +0.6⨯250(200-x )=240006. 若有一正整数N 为65、104、260三个公倍数,则N 可能为下列何者? (A) 1300 (B) 1560 (C) 1690 (D) 18007. 某社团有60人,附表为此社团成员年龄的次数分配表。
2013年全国初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12b x x a +=-,12cx x a=,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c --+=,即2222(2)0c x b ac x a --+=.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ). (A )OD (B )OE (C )DE(D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(第3题答题)(第3题)(第4题)(A )3 (B )4 (C )6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB= S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232**** 的值为( ).(A )607967 (B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***= ,则()20132012433m ****=* 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=* 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 . 【答案】2013(第4题答题)(第7题答题)(第7题)【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c,d,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数) 【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.…………5分抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.…………10分因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.…………15分所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.…………20分12.设△ABC的外心,垂心分别为O H,,若B C H O,,,共圆,对于所有的△ABC,求BAC∠所有可能的度数.【解答】分三种情况讨论.(i)若△ABC为锐角三角形.因为1802BHC A BOC A∠=︒-∠∠=∠,,所以由BHC BOC∠=∠,可得1802A A︒-∠=∠,于是60A∠=︒.…………5分(ii)若△ABC为钝角三角形.当90A∠>︒时,因为(第11题答题)(第12题答题(i))(第12题答题(ii))(第11题)()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
一九九一年第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35.答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18.答( )3. 方程012=--x x 的解是 (A )251±; (B )251±-;(C )251±或251±-; (D )251±-±.答( )4. 已知:)19911991(2111n nx --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d cb a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21;答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+acb 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m xx x x )1(1)1(+=-+恒成立,则=++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=, CD = 6,则AD = .11=S3S =132=S120135第二试xx + y,x -y,x y,y四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.一九九二年第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是 (A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是 (A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xky 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD , ︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于 (A)1:2 (B)1:3 (C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.一九九三年 第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ; 2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A)Ⅰ,Ⅱ都对 (B)Ⅰ对,Ⅱ错 (C)Ⅰ错,Ⅱ对. (D)Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值; Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值. 其中正确的是(A)Ⅰ (B)Ⅱ (C)Ⅲ (D)Ⅳ 4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B)53124x x x x x >>>>; (C)52413x x x x x >>>>; (D)24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解 (A)等于4 (B)小于4 (C)大于5 (D)等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是 (A)22-(B)22(C)23(D)21-.答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n , p ,那么m :n :p 等于(A)cb a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1.当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0 B.都不大于0C.至少有一个小0于D.至少有一个大于0 〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4 B.等于5C.等于6 D.不能确定〔答〕( )A.1 B.-1 C.22001 D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
台湾数学竞赛试题及答案一、选择题1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 如果一个数的立方等于它本身,那么这个数可以是:A. 1B. -1C. 0D. A、B 和 C 都是答案:D3. 一个长方形的长是宽的两倍,如果宽增加3厘米,长增加7厘米,那么面积增加了63平方厘米。
请问原来的长方形的宽是多少厘米?A. 9B. 6C. 12D. 3答案:B二、填空题4. 计算下列表达式的值:\( (x + y)^2 - (x - y)^2 = \) _______答案:\( 4xy \)5. 一个数列的前三项为1, 2, 4,从第四项开始,每一项都是前三项的和。
请问这个数列的第10项是多少?答案:\( 2^{10} - 3 \)三、解答题6. 已知一个等差数列的前三项分别为 \( a - d \),\( a \),\( a+ d \),其中 \( a \) 和 \( d \) 是正整数。
如果这个等差数列的前七项的和为140,求 \( a \) 和 \( d \) 的值。
解答:首先,我们知道等差数列的前 \( n \) 项和公式为 \( S_n = \frac{n}{2} [2a + (n - 1)d] \)。
根据题意,前三项的和为\( 3a \)。
由于前七项的和为140,我们可以得到方程 \( \frac{7}{2} [2a + 6d] = 140 \)。
简化后得到 \( 7a + 21d = 140 \)。
由于 \( a \) 和 \( d \) 都是正整数,我们可以通过列举法找到满足条件的解。
通过尝试,我们可以得到 \( a = 10 \),\( d = 2 \)。
7. 一个工厂生产两种产品,产品A的生产成本为300元,产品B的生产成本为200元。
如果工厂希望每天的总生产成本不超过2000元,并且每天至少要生产10个产品A,那么产品A最多可以生产多少个?解答:设产品A生产 \( x \) 个,产品B生产 \( y \) 个。
2013年全国初中数学竞赛试题参考答案一、选择题:(每题7分,共35分)1.【】2222222(234)(23)0.1()0().21.().2a b c a b c a b c a b c ab bc ca a b c ab bc ca A a b c ++=++-++=++=++=-++++=-++由已知可得,因此,,则:故,选2.】2222222222222222()(2)0()(2)0()(2)0()(2)0.A c x b ac x aB c x b ac x aC c x b ac x aD c x b ac x a +-+=--+=+--=---=;;;12121212222121222222222121212222222122222000.11()22111120.(2)0.().x x x b ca x x x x x x c a ax x x x b ac a x x x x c x x cb ac a x x x x c cc x b ac x a B ≠+=-=≠≠+--+==⋅=--+=--+=由于关于的二次方程有两个非零实根、,则:,且,;且,从而又,因此,以、为实根的一元二次方程为:即,故,选3.Rt ABC O AB CD AB AB D DE OC ∆⊥⊥如图,在中,为斜边中点,交于点,交.OC E ADDB CD OD OE DE AC于点若、和的长度为有理数,则:线段、、和【 】的长度中,不一定为有理数的是()()()().A ODB OEC DED AC ;;;通护关于管路高中资料试卷连接管口处理高决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。
线缆敷设原对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关以正常工作;对于继电保护进行整核对定过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。
2013年下学期九年级数学竞赛试题时量:120分钟 满分:120分一、选择题(每小题3分,共30分)1. 已知函数y kx b =+的图象如图所示,则一元二次方程210x x k ++-=根的存在情况是( C )第1题图 第2题图A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定2. 如上图,ABC △中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作ABC △的位似图形,并把ABC △的边长放大到原来的2倍,记所得的像是''A B C △.设点B 的对应点'B 的横坐标是a ,则点B 的横坐标是( D )A .12a -B .()112a -+C .()112a --D .()132a -+ 3. 已知实数a ,b 分别满足2640a a -+=,2640b b -+=,且a b ≠,则b a a b +的值是( A )A .7B .7-C .11D .11-4. 甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?” 甲说:“是乙不小心闯的祸.”乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸( D )A .甲B .乙C .丙D .丁5. 若222222b c a c a b k a b c+++===,则k 的值为( D ) A . 4 B . 0 C .2-或0 D . 4或2-6. 已知1sin cos 8αα⋅=,4590α︒<<︒,则cos sin αα-=( B )A B .C .34 D .7. 已知方程()24210x m x m -++=的两根恰好是一个直角三角形两锐角的余弦值,则m 的值为( B )A .BC .D .不能确定8. 如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( C )第8题图 第9题图A . 1732B .12C .1736D .17389. 如上图,反比例函数()0k y x x=>的图象经过矩形OABC 对角线的交点 M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则 k 的值为( C )A . 1B . 2C . 3D . 410. 一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x ,掷第二次,将朝上一面的点数记为y ,则点() x y ,落在直线5y x =-+上的概率为( C )A .118 B .112 C .19 D .14二、填空题(每小题4分,共32分) 11. 若()()22222340x y x y +++-=,则22x y +=1 . 12. 下列命题:①有两边和其中一边的对角相等的两个三角形全等;②三角形的内角至少有一个不小于60︒;③若a ,b ,c 是三角形的三条边,则22220a b c ab +--<;④8点30分,时针与分针的夹角是60︒;⑤若n 是自然数,则2361n n ++不可能为3的倍数,上述命题是真命题的是 ②③⑤ .13. 在一块长为8、宽为且三角形的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是2 .第13题图 第14题图 第15题图14. 如上图,在一个坡角为30︒的斜坡上有一棵树,高AB ,当太阳光与水平线成60︒时,测得该树在斜坡上的树影BC 的长为6m ,则树高AB =6 m .15. 如上图一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B ,C ,D 三人随坐在其他三个座位上,则B 与D 相邻而坐的概率是23 . 16. 如图,OPQ △的边长为2的等边三角形,若反比例函数的图象过点P ,则它的关系式是()0y x x=> .第16题图 第17题图17. 二次函数2y ax bx c =++的图象如图所示,下列关系式中:0a <①;0abc >②;0a b c ++>③;240b ac ->④.其中不正确的序号是 ③ .18. 将抛物线()20y ax bx c a =++≠ 向下平移3个单位,再向左平移4个单位得到抛物线2245y x x =--+,则原抛物线的顶点坐标是()3 10 , .三、解答题(共58分)19. (8分)小丁和小王一起玩掷骰子游戏,小王说:我们轮流掷两颗骰子,如果点数之和为2、3、4、5、10、11、12,就算我胜;如果点数之和为6、7、8、9,就算你胜.小丁则认为小王在7种情况下可以获胜,而自己只在4种情况下才能获胜,因此获胜的机会较小,你支持小丁的想法吗?如果请你做裁判,你能设计出公平合理的游戏规则吗?20. 点数和为4、7、8、9,则小丁赢.这样会公平.(10分)如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60︒.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45︒,已知山坡AB 的坡度 1i =,10AB =米,15AE =米.(1)(4分)求点B 距水平面AE 的高度BH ;(2)(6分)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1 1.414 1.732)21. (10分)已知如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点()2 0A -,,与反比例函数在第一象限内的图象的交于点()2B n ,,连接BO ,若4AOB S =△.(1)(6分)求该反比例函数的解析式和直线AB 的解析式;(2)(4分)若直线AB 与y 轴的交点为C ,求OCB △的面积.22. (10分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?23. (10分)如图所示,已知在ABC △中,90BAC ∠=︒,AD BC ⊥,E 是AC 的中点,ED 交AB 延长线于F ,求证:AB DF AC AF=.24. (10分)如图,在ABC △中,90C ∠=︒, 5 BC m =,12 AC m =.M 点在线段CA上,从C 向A 运动,速度为1 /m s ;同时N 点在线段AB 上,从A 向B 运动,速度为2 /m s .运动时间为t 秒.(1)(4分)当t 为何值时,∠AMN=∠ANM ?(2)(6分)当t 为何值时,△AMN 的面积最大?并求出这个最大值.。
2013年全国初中数学联赛(初二组)初赛试卷一、选择题(本题满分42分,每小题7分) 1、()︒---+1|3|4π的值是( )A 、4B 、5C 、8D 、9 2、若()()222-+=+-bx x a x x ,则=+b a ( )A 、1-B 、0C 、1D 、23、如图,已知在ABC ∆中,BO 平分ABC ∠,CO 平分ACB ∠,且AB OM //,AC ON //,若6=CB ,则OMN ∆的周长是( )A 、3B 、6C 、9D 、12 4、不等式组⎪⎩⎪⎨⎧++≥+23131221x x x x 的解是( ) A 、16≤-x B 、16 x - C 、16 x ≤- D 、16≤≤-x5、非负整数x ,y 满足1622=-y x ,则y 的全部可取值之和是( ) A 、9 B 、5 C 、4 D 、36、如图,已知正方形ABCD 的边长为4,M 点为CD 边上的中点,若M 点是A 点关于线段EF 的对称点,则EDAE等于( ) A 、35 B 、53 C 、2 D 、21二、填空题(本题满分28分,每小题7分)1、已知0|3|22=++-+-y x x ,则_________22=+y x .2、已知31=+x x ,则_____________132=++x x x. 3、设⎩⎨⎧=++=++36542332z y x z y x ,则___________23=+-z y x .4、如图,在ABC ∆中,BC AC =,且︒=∠90ACB ,点D 是AC 上一点,BD AE ⊥,交BD 的延长线于点E ,且BD AE 21=,则_________=∠ABD . 三、(本大题满分20分)先化简后,再求值:244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中12-=a .MNO ACBFE M GDA CB2013年全国初中数学联赛(初二组)初赛试卷参考答案及评分标准一、选择题(本大题满分42分,每小题7分) 1、A 2、B 3、B 4、C 5、D 6、A 二、填空题(本大题满分28分,每小题7分) 1、13 2、1013、104、︒5.22 三、(本大题满分20分)解原式()()2421222+-÷⎥⎦⎤⎢⎣⎡+--+-=a a a a a a a (5分) ()4224222-+⋅+--=a a a a a a ()21+=a a (10分)()()1212121=+--=(5分)四、(本大题满分25分) 解:∵822=-=OC OB CB∴B 点坐标(8,6) (5分) 又∵A (10,0)∴AB 的中点坐标为(9,3)∴OD 的表达式为:x y 31= (10分)∵A (10,0),C (0,6)∴AC 的表达式为:653+-=x y (15分)由⎪⎪⎩⎪⎪⎨⎧+-==65331x y x y ,解得:⎪⎪⎩⎪⎪⎨⎧==715745y x (20分) 故点D 的坐标为(745,715) (25分) 五、(本大题满分25分)证明:连结AC ,取AC 的中点K ,连结EK ,FK (5分) ∵ED AE =,KC AK = ∴DC EK //,DC EK 21=(10分)同理AB FK //,AB FK 21= (15分) ∴EK DC AB FK ===2121 ∴EFK FEK ∠=∠ (20分) ∵DC EK // ∴FEK CMF ∠=∠ ∵AB FK // ∴EFK BNF ∠=∠∴CMF BNF ∠=∠ (25分) 四、(本大题满分25分)如图,已知直角梯形OABC 的A 点在x 轴上,C 点在y 轴上,6=OC ,10==OB OA ,AB PQ //交AC 于D 点,且︒=∠90ODQ ,求D 点的坐标。
2013年台湾省中考数学试卷一.选择题1.(2013台湾)计算12÷(﹣3)﹣2×(﹣3)之值为何?()A.﹣18 B.﹣10 C.2 D.18考点:有理数的混合运算.专题:计算题.分析:根据运算顺序,先计算乘除运算,再计算加减运算,即可得到结果.解答:解:原式=﹣4﹣(﹣6)=﹣4+6=2.故选C点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.2.(2013台湾)小华班上比赛投篮,每人投6球,如图是班上所有学生投进球数的饼图.根据图,下列关于班上所有学生投进球数的统计量,何者正确?()A.中位数为3 B.中位数为2.5 C.众数为5 D.众数为2考点:扇形统计图;中位数;众数.分析:根据中位数和众数的定义,结合扇形统计图,选出正确选项即可.解答:解:由图可知:班内同学投进2球的人数最多,故众数为2;因为不知道每部分的具体人数,所以无法判断中位数.故选D.点评:本题考查了扇形统计图的知识,通过图形观察出投进2球的人数最多是解题的关键.3.(2013台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n考点:二次根式的性质与化简.专题:计算题.分析:根据二次根式的化简公式得到k,m及n的值,即可作出判断.解答:解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选D点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.4.(2013台湾)若一多项式除以2x2﹣3,得到的商式为7x﹣4,余式为﹣5x+2,则此多项式为何?()A.14x3﹣8x2﹣26x+14 B.14x3﹣8x2﹣26x﹣10C.﹣10x3+4x2﹣8x﹣10 D.﹣10x3+4x2+22x﹣10考点:整式的除法.专题:计算题.分析:根据题意列出关系式,计算即可得到结果.解答:解:根据题意得:(2x2﹣3)(7x﹣4)+(﹣5x+2)=14x3﹣8x2﹣21x+12﹣5x+2=14x3﹣8x2﹣26x+14.故选A点评:此题考查了整式的除法,涉及的知识有:多项式乘多项式法则,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.5.(2013台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000 B.0.6×250x+0.8×125(200﹣x)=24000 C.0.8×125x+0.6×250(200+x)=24000 D.0.8×125x+0.6×250(200﹣x)=24000 考点:由实际问题抽象出一元一次方程.分析:由于外套卖出x件,则衬衫和裤子卖出(200﹣x)件,根据题意可得等量关系:衬衫的单价×6折×数量+衬衫和裤子的原价×8折×数量=24000元,由等量关系列出方程即可.解答:解:若外套卖出x件,则衬衫和裤子卖出(200﹣x)件,由题意得:0.6×250x+0.8×125(200﹣x)=24000,故选:B.点评:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.6.(2013台湾)若有一正整数N为65、104、260三个公倍数,则N可能为下列何者?()A.1300 B.1560 C.1690 D.1800考点:有理数的混合运算.专题:计算题.分析:找出三个数字的最小公倍数,判断即可.解答:解:根据题意得:65、104、260三个公倍数为1560.故选B点评:此题考查了有理数的混合运算,弄清题意是解本题的关键.7.(2013台湾)某社团有60人,附表为此社团成员年龄的次数分配表.求此社团成员年龄的四分位距为何?()年龄(岁)36 38 39 43 46 48 50 55 58 60 62 65次数(人) 4 5 7 5 5 2 1 10 7 8 3 3A.1 B.4 C.19 D.21考点:方差.分析:先根据中位数的定义算出Q2的值,再根据四分位距找出Q1与Q3的值,最后进行相减即可.解答:解:共有60个数,则中位数是第30和31个数的平均数是(55+55)÷2=55,则Q2=55,∵Q1=39,Q3=58,∴此社团成员年龄的四分位距S:58﹣39=19;故选C.点评:此题考查了四分位距,掌握四分位距公式,找出Q1与Q3的值是解题的关键.8.(2013台湾)坐标平面上有一函数y=﹣3x2+12x﹣7的图形,其顶点坐标为何?()A.(2,5)B.(2,﹣19)C.(﹣2,5)D.(﹣2,﹣43)考点:二次函数的性质.分析:把函数解析式整理成顶点式形式,然后写出顶点坐标即可得解.解答:解:∵y=﹣3x2+12x﹣7=﹣3(x2﹣4x+4)+12﹣7,=﹣3(x﹣2)2+5,∴函数的顶点坐标为(2,5).故选A.点评:本题考查了二次函数的性质,把函数解析式转化为顶点式形式再确定顶点坐标更加简便.9.(2013台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?()A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°考点:平行线的性质.分析:先根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠3,然后求出∠2+∠3,再根据两直线平行,同位角相等表示出∠2+∠5,根据邻补角的定义用∠5表示出∠6,再代入整理即可得到∠1+∠6,根据两直线平行,同旁内角互补表示出∠3+∠4,从而得解.解答:解:根据三角形的外角性质,∠3=∠1+∠A,∵∠1+∠2=180°,∴∠2+∠3=∠2+∠1+∠A>180°,故B选项错误;∵L∥N,∴∠3=∠5,∴∠2+∠5=∠2+∠1+∠A>180°,故A选项正确;C.∵∠6=180°﹣∠5,∴∠1+∠6=∠3﹣∠A+180°﹣∠5=180°﹣∠A<180°,故本选项错误;D.∵L∥N,∴∠3+∠4=180°,故本选项错误.故选A.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,分别用∠A表示出各选项中的两个角的和是解题的关键.10.(2013台湾)判断×之值会介于下列哪两个整数之间?()A.22、23 B.23、24 C.24、25 D.25、26考点:估算无理数的大小.分析:先算出与的积,再根据所得的值估算出在哪两个整数之间,即可得出答案.解答:解:∵×=,又∵24<25,∴×之值会介于24与25之间,故选C.点评:本题考查了估算无理数大小,掌握的大约值是解题的关键,是一道基础题.11.(2013台湾)坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)考点:点的坐标.分析:根据点到x轴的距离等于纵坐标的长度求出点A的纵坐标,再根据点到y轴的距离等于横坐标的长度求出横坐标,即可得解.解答:解:∵A点到x轴的距离为3,A点在第二象限,∴点A的纵坐标为3,∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,∴点A的横坐标为﹣9,∴点A的坐标为(﹣9,3).故选A.点评:本题考查了点的坐标,主要利用了点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度,需熟练掌握并灵活运用.12.(2013台湾)解一元一次不等式12﹣(2x﹣5)≥7x﹣3,得其解的范围为何?()A.x≥B.x≥C.x≤D.x≤考点:解一元一次不等式.分析:先去括号,再利用不等式的基本性质,把不等号右边的x移到左边,合并同类项,系数化为1,即可求得原不等式的解集.解答:解:12﹣(2x﹣5)≥7x﹣3,12﹣2x+5≥7x﹣3,﹣2x﹣7x≥﹣3﹣12﹣5,﹣9x≥﹣20,x≤.故选D.点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.(2013台湾)以下表示小勋到商店购买2个单价相同的布丁和10根单价相同的棒棒糖的经过.根据上文,判断布丁和棒棒糖的单价相差多少元?()A.20 B.30 C.40 D.50考点:二元一次方程组的应用.分析:设布丁的单价为x元/个,棒棒糖y元一个,则2个布丁和12个棒棒糖的价格为200元建立方程为:2x+12y=200.2个布丁和10个棒棒糖的价格为180元建立方程为:2x+10y=180,将两个方程构成房出组求出其解即可.解答:解:设布丁的单价为x元/个,棒棒糖y元一个,由题意,得,解得:,∴布丁和棒棒糖的单价相差:40﹣10=30元.故选B.点评:本题考查列二元一次组接实际问题的运用,二院一次方程的解法的运用,解答时根据单价×数量=总价建立方程是解答本题的关键.14.(2013台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A.10 B.11 C.12 D.13考点:勾股定理;直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半着一性质可求出AB的长,再根据勾股定理即可求出BE的长.解答:解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.15.(2013台湾)计算()3×()4×()5之值与下列何者相同?()A.B.C.D.考点:幂的乘方与积的乘方.专题:计算题.分析:每一个因式变形为指数相同的因式,利用积的乘方逆运算法则计算得到结果,即可作出判断.解答:解:原式=()3×()3×()3×()×()2=(××)3×()×()2==.故选B点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.16.(2013台湾)图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为何?()A.B.C.42 D.44考点:一元一次方程的应用.分析:设每一份为x,则图②中白色的面积为8x,灰色部分的面积为3x,根据②中的纸片的面积为33为等量关系建立方程,求出其解即可.解答:解:设每一份为x,则图②中白色的面积为8x,灰色部分的面积为3x,由题意,得8x+3x=33,解得:x=3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42.故选C.点评:本题考查了比列问题在解实际问题中的运用,一元一次方程的解法的运用,解答时根据条件建立方程求出灰色部分的面积是关键.17.(2013台湾)如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为何?()A.5 B.6 C. D.考点:切线的性质;正方形的性质.分析:求出正方形ANOM,求出AM长和AD长,根据DE=DM求出即可.解答:解:连接OM、ON,∵四边形ABCD是正方形,∴AD=AB=11,∠A=90°,∵圆O与正方形ABCD的两边AB、AD相切,∴∠OMA=∠ONA=90°=∠A,∵OM=ON,∴四边形ANOM是正方形,∴AM=OM=5,DE与圆O相切于E点,圆O的半径为5,∴AM=5,DM=DE,∴DE=11﹣5=6,故选B.点评:本题考查了正方形的性质和判定,切线的性质,切线长定理等知识点的应用,关键是求出AM长和得出DE=DM.18.(2013台湾)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF考点:全等三角形的判定.分析:根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.解答:解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选B.点评:本题考查了全等三角形的判定的应用,主要考查学生的观察图形的能力和推理能力,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.19.(2013台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?()A.3:2 B.5:3 C.8:5 D.13:8考点:翻折变换(折叠问题);三角形的面积.分析:由题意分别计算出△DBP与△DCP的面积,从而BP:PC=S△DBP:S△DCP,问题可解.解答:解:由题意可得:S△ABD=S△ABC﹣S△DBC=80﹣50=30.由折叠性质可知,S△DBP=S△ABD=30,∴S△DCP=S△DBC﹣S△DBP=50﹣30=20.∴BP:PC=S△DBP:S△DCP=30:20=3:2.故选A.点评:本题考查了折叠的性质:折叠前后的两个三角形是全等三角形,它们的面积相等.20.(2013台湾)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55考点:矩形的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠BCP,然后求出∠MCP,再根据等边对等角求解即可.解答:解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=PC,MP=MC,∵∠PBC=70°,∴∠BCP=(180°﹣∠PBC)=(180°﹣70°)=55°,在长方形ABCD中,∠BCD=90°,∴∠MCP=90°﹣∠BCP=90°﹣55°=35°,∴∠MPC=∠MCP=35°.故选B.点评:本题考查了矩形的四个角都是直角的性质,等腰三角形两底角相等的性质以及等边对等角,是基础题.21.(2013台湾)已知甲袋有5张分别标示1~5的号码牌,乙袋有6张分别标示6~11的号码牌,慧婷分别从甲、乙两袋中各抽出一张号码牌.若同一袋中每张号码牌被抽出的机会相等,则她抽出两张号码牌,其数字乘积为3的倍数的机率为何?()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:根据题意列出相应的表格,找出所有等可能出现的结果,进而得到乘积为3的情况个数,即可求出所求的概率.解答:解:根据题意列表得:1 2 3 4 56 (1,6)(2,6)(3,6)(4,6)(5,6)7 (1,7)(2,7)(3,7)(4,7)(5,7)8 (1,8)(2,8)(3,8)(4,8)(5,8)9 (1,9)(2,9)(3,9)(4,9)(5,9)10 (1,10)(2,10)(3,10)(4,10)(5,10)11 (1,11)(2,11)(3,11)(4,11)(5,11)所有等可能的结果为30种,其中是3的倍数的有14种,则P==.故选C点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(2013台湾)坐标平面上,有一线性函数过(﹣3,4)和(﹣7,4)两点,判断此函数图形会过哪两象限?()A.第一象限和第二象限B.第一象限和第四象限C.第二象限和第三象限D.第二象限和第四象限考点:一次函数的性质.分析:根据该线性函数过点(﹣3,4)和(﹣7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.解答:解:∵坐标平面上,有一线性函数过(﹣3,4)和(﹣7,4)两点,∴该函数图象是直线y=4,∴该函数图象经过第一、二象限.故选A.点评:本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y 是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.23.(2013台湾)附图为正三角形ABC与正方形DEFG的重迭情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4 D.6﹣6考点:正方形的性质;等边三角形的性质.分析:过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.解答:解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故选D.点评:本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.24.(2013台湾)下列何者是22x7﹣83x6+21x5的因式?()A.2x+3 B.x2(11x﹣7)C.x5(11x﹣3)D.x6(2x+7)考点:因式分解-十字相乘法等;因式分解-提公因式法.专题:计算题.分析:已知多项式提取公因式化为积的形式,即可作出判断.解答:解:22x7﹣83x6+21x5=x5(22x2﹣83x+21)=x5(11x﹣3)(2x﹣7),则x5(11x﹣3)是多项式的一个因式.故选C点评:此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.25.(2013台湾)附图的长方体与下列选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?()A.B.C.D.考点:几何体的表面积.分析:根据立体图形的面积求法,分别得出几何体的表面积即可.解答:解:∵立体图形均是由边长为1公分的小正方体紧密堆砌而成,∴附图的表面积为:6×2+3×2+2×2=22,只有选项B的表面积为:5×2+3+4+5=22.故选:B.点评:此题主要考查了几何体的表面积求法,根据已知图形求出表面积是解题关键.26.(2013台湾)若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.5考点:解一元二次方程-直接开平方法.分析:首先同时除以a得:(x﹣b)2=,再两边直接开平方可得:x﹣b=±,然后把﹣b移到右边,再根据方程的两根可得a、b的值,进而算出a+b的值.解答:解:a(x﹣b)2=7,两边同时除以a得:(x﹣b)2=,两边直接开平方可得:x﹣b=±,则x=±+b,∵两根为±,∴a=4,b=,∴a+b=4=,故选:B.点评:此题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.27.(2013台湾)图(①)的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A.5 B.10 C.15 D.20考点:三元一次方程组的应用.分析:设左天平的一袋石头重x千克,右天平的一袋石头重y千克,被移动的石头重z千克,根据题意及图象可以得出方程x=y+20及x﹣z=y+z+10,由两个方程构成方程组求出其解即可.解答:解:设左天平的一袋石头重x千克,右天平的一袋石头重y千克,被移动的石头重z 千克,由题意,得,解得:z=5.故选A.点评:本题考查了列三元一次方程组接实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反应的意义找到等量关系是关键.28.(2013台湾)图(①)为雅婷左手拿着3张深灰色与2张浅灰色的牌迭在一起的情形.以下是她每次洗牌的三个步骤:步骤一:用右手拿出迭在最下面的2张牌,如图(②).步骤二:将右手拿的2张牌依序交错插入左手拿的3张牌之间,如图(③).步骤三:用左手拿着颜色顺序已改变的5张牌,如图(④).若依上述三个步骤洗牌,从图(①)的情形开始洗牌若干次后,其颜色顺序会再次与图(①)相同,则洗牌次数可能为下列何者?()A.18 B.20 C.25 D.27考点:推理与论证.分析:根据洗牌的规则得出洗牌的变化规律,进而根据各选项分析得出即可.解答:解:设5张牌分别为:1,2,3,A,B;第1次洗牌后变为:1,A,2,B,3;第2次洗牌后变为:1,B,A,3,2;第3次洗牌后变为:1,3,B,2,A;第4次洗牌后变为:1,2,3,A,B;故每洗牌4次,其颜色顺序会再次与图(①)相同,故洗牌次数可能的数为4的倍数,选项中只有20符合要求.故选:B.点评:此题主要考查了推理与论证,根据已知得出洗牌的变化规律是解题关键.29.(2013台湾)数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上.若|a|=|b|,AC:CB=1:3,则下列b、c的关系式,何者正确?()A.|c|=|b| B.|c|=|b| C.|c|=|b| D.|c|=|b|考点:两点间的距离;数轴.分析:根据题意作出图象,根据AC:CB=1:3,可得|c|=,又根据|a|=|b|,即可得出|c|=|b|.解答:解:∵C在AB上,AC:CB=1:3,∴|c|=,又∵|a|=|b|,∴|c|=|b|.故选A.点评:本题考查了两点间的距离,属于基础题,根据AC:CB=1:3结合图形得出|c|=是解答本题的关键.30.(2013台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4考点:正方形的性质.分析:根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.解答:解:∵四边形ABCD、AEFG均为正方形,∴∠BAD=∠EAG=90°,∵∠BAD=∠1+∠DAE=90°,∠EAG=∠2+∠DAE=90°,∴∠1=∠2,在Rt△ABE中,AE>AB,∵四边形AEFG是正方形,∴AE=AG,∴AG>AB,∴∠3>∠4.故选D.点评:本题考查了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,要注意在同一个三角形中,较长的边所对的角大于较短的边所对的角的应用.31.(2013台湾)如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确考点:平行四边形的判定.分析:求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.解答:解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.点评:本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.32.(2013台湾)若A=101×9996×10005,B=10004×9997×101,则A﹣B之值为何?()A.101 B.﹣101 C.808 D.﹣808考点:因式分解的应用.分析:先把101提取出来,再把9996化成(10000﹣4),10005化成(10000+5),10004化成(10000+4),9997化成(10000﹣3),再进行计算即可.解答:解:∵A=101×9996×10005,B=10004×9997×101,∴A﹣B=101×9996×10005﹣10004×9997×101=101[(10000﹣4)(10000+5)﹣(10000+4)(10000﹣3)]=101(100000000+10000﹣20﹣100000000﹣10000+12)=101×(﹣8)=﹣808;故选D.点评:此题考查了因式分解的应用,解题的关键是提取公因式,把所给的数都进行分解,再进行计算.33.(2013台湾)如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?()A.甲>乙,乙>丙B.甲>乙,乙<丙C.甲<乙,乙>丙D.甲<乙,乙<丙考点:相似三角形的判定与性质.分析:首先过点B作BH⊥GF于点H,则S乙=AB•AC,易证得△ABC∽△DBE,△GBH∽△BCA,可求得GF,DB,DE,DF的长,继而求得答案.解答:解:如图:过点B作BH⊥GF于点H,则S乙=AB•AC,∵AC∥DE,∴△ABC∽△DBE,∴,∵BC=7,CE=3,∴DE=AC,DB=AB,∴AD=BD﹣BA=AB,∴S丙=(AC+DE)•AD=AB•AC,∵A∥GF,BH⊥GF,AC⊥AB,∴BH∥AC,∴四边形BDFH是矩形,∴BH=DF,FH=BD=AB,∴△GBH∽△BCA,∴,∵GB=2,BC=7,∴GH=AB,BH AC,∴DF=AC,GF=GH+FH=AB,∴S甲=(BD+GF)•DF=AB•AC,∴甲<乙,乙<丙.故选D.点评:此题考查了相似三角形的判定与性质、直角梯形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.34.(2013台湾)如图,是半圆,O为AB中点,C、D两点在上,且AD∥OC,连接BC、BD.若=62°,则的度数为何?()A.56 B.58 C.60 D.62考点:圆心角、弧、弦的关系;平行线的性质.分析:以AB为直径作圆,如图,作直径CM,连接AC,根据平行线求出∠1=∠2,推出弧DC=弧AM=62°,即可求出答案.解答:解:以AB为直径作圆,如图,作直径CM,连接AC,∵AD∥OC,∴∠1=∠2,∴弧AM=弧DC=62°,∴弧AD的度数是180°﹣62°﹣62°=56°,故选A.点评:本题考查了平行线性质,圆周角定理的应用,关键是求出弧AM的度数.。
全国初中数学竞赛试题参考答案答题时注意:1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线.3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ). (A )7 (B )(C )(D )5 【答】(A )解:因为21x =, 所以2为根的一元二次方程为2t t +22222]2()(1)2(3)7y y x+-⨯-⨯=--⨯-= 21,2,3,4,5,6的质地均匀的正方体骰子先m ,n ,则二次函数2y x mx n =++的图象与x 轴 ).(A )512 (B )49 (C )1736(D )12 【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =.O 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线.所以,满足条件的6个点可以确定的直线最少有8条.4ABC DC 的延长线交圆O 于点E ,则AE 为半径上,5三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,(第4题)(第8题)与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3;4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或解:由(x a **依题意有 解得,a 73分钟从迎面驶来一辆1818路公交车总站每隔【答】4.解:设18的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ①每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ②由①,②可得 x s 4=,所以 4=xs . 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 .【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB .又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,(第9题答案)所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9. 另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠ 所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形,即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I AB ,AC 相交于点D【答】163. 解:如图,设△BC 边上的高为a h 12a ABC ah S ==△ 所以 a r h 因为△ADE ∽△(1)(1)aa ah a b c -=-++a b c =++,163=.ABC S rp ∆==(这里2a b c p ++=) 所以12r == 2ABC a S h a ===△ 由△ADE ∽△ABC ,得23a a h r DE BC h -===, 即21633DE BC ===10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d于是 其中s ,t所以13s -,289,257,故只能是2(13)t +=289因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6;当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。