煤直接液化技术---
- 格式:pptx
- 大小:13.34 MB
- 文档页数:208
洁净煤技术——直接液化技术一、德国IGOR工艺1981年, 德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进, 建成日处理煤200吨的半工业试验装置, 操作压力由原来的70兆帕降至30兆帕, 反应温度450~480摄氏度;固液分离改过滤、离心为真空闪蒸方法, 将难以加氢的沥青烯留在残渣中气化制氢, 轻油和中油产率可达50%。
原理图:IGOR直接液化法工艺流程工艺流程: 煤与循环溶剂、催化剂、氢气依次进入煤浆预热器和煤浆反应器, 反应后的物料进入高温分流器, 由高温分流器下部减压阀排出的重质物料经减压闪蒸, 分出残渣和闪蒸油, 闪蒸油又通过高压泵打入系统, 与高温分离器分出的气体及清油一起进入第一固定床反应器, 在此进一步加氢后进入分离器。
中温分离器分出的重质油作为循环溶剂, 气体和轻质油气进入第二固定床反应器再次加氢, 通过低温分离器分离出提质后的轻质油品, 气体经循环氢压机压缩后循环使用。
为了使循环气体中的氢气浓度保持在所需的水平, 要补充一定数量的新鲜氢气。
液化油经两步催化加氢,已完成提质加工过程。
油中的氮和硫含量可降低到10-5数量级。
此产品经直接蒸馏可得到直馏汽油和柴油,再经重整就可获得高辛烷值汽油。
柴油只需加少量添加剂即可得到合格产品。
与其他煤的直接液化工艺相比,IGOR工艺的煤处理能力最大,煤液化反应器的空速为0.36~0.50 t /( m3·h)。
在反应器相同的条件下,IGOR工艺的生产能力可比其他煤液化工艺高出50%~100%。
由于煤液化粗油的提质加工与煤的液化集为一体,IGOR煤液化工艺产出的煤液化油不仅收率高,而且油品质量好。
工艺特点: 把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失, 并在固定床催化剂上使二氧化碳和一氧化碳甲烷化, 使碳的损失量降到最小。
投资可节约20%左右, 并提高了能量效率。
现代化煤直接液化技术进展近年来,随着能源需求的不断增长和环保意识的提高,煤直接液化技术受到了越来越多的关注和重视。
煤直接液化是一种将煤直接转化为液体燃料的技术,可以有效地利用煤资源,减少对传统石油资源的依赖,并且减少大气污染物的排放。
本文将对现代化煤直接液化技术的进展进行详细介绍。
目前,现代化煤直接液化技术的发展主要集中在以下几个方面:1. 煤直接液化工艺的改进煤直接液化工艺是将固体煤转化为液体燃料的关键步骤,因此其工艺的改进对于提高煤直接液化技术的效率和经济性至关重要。
目前,主流的煤直接液化工艺主要有传统的H-Coal工艺和现代化的ECL工艺。
传统的H-Coal工艺主要采用煤浆作为原料,通过高温高压的反应条件将煤转化为液体燃料,但存在能耗高、产品质量低等问题。
而现代化的ECL工艺采用液态化学品作为催化剂,能够更高效地转化煤为液体燃料。
此外,还有一些新的工艺正在研发和应用中,如超高效液化工艺、接触氢化工艺等,这些工艺在提高煤直接液化效率和产品质量方面具有巨大潜力。
2. 催化剂的研究和应用催化剂在煤直接液化过程中起到了至关重要的作用,能够加快煤的转化速度、提高产品品质和选择性,减少副产物的生成。
目前,常用的煤直接液化催化剂主要有铁、钴、镍等金属催化剂和固体酸催化剂。
金属催化剂主要用于气相反应,固体酸催化剂主要用于液相反应。
近年来,针对煤直接液化过程中产生的硫、氮等污染物,研发了一系列新型催化剂,如硫化钴催化剂、硫酸锆催化剂等,能够高效地去除硫、氮等污染物,提高产品的质量和环境友好性。
3. 煤直接液化衍生产品的开发和利用除了液体燃料,煤直接液化还可以产生一系列其他有价值的产品,如液化石油气、煤化工原料、轻油等。
这些产品在国内外市场上具有广阔的前景和巨大的价值。
近年来,一些国内外企业和研究机构开始关注煤直接液化衍生产品的开发和利用,通过优化煤直接液化工艺和改进催化剂,提高衍生产品的质量和产量,为能源转型和煤炭资源的有效利用做出了积极贡献。
现代化煤直接液化技术进展煤直接液化技术是将煤转化为液体燃料的一种重要技术,具有丰富的储量、分布广、资源再生利用等优点。
在现代化煤直接液化技术的研发过程中,不断取得了重要的进展。
本文将从工艺路线、催化剂、反应器设计以及环境保护等方面对煤直接液化技术的现代化进展进行详细介绍。
煤直接液化技术的工艺路线有很多种,其中常用的有两种:一是常压下的合成法,通过在常压下将煤与合成气进行反应,生成液体燃料;二是高压下的合成法,通过在高压条件下对煤进行加氢反应,生成液体燃料。
这两种工艺路线各有优缺点,需要根据煤的性质和环境条件进行选择。
在煤直接液化技术的研发中,催化剂的研究是一个关键环节。
通过选择合适的催化剂,可以提高反应速率、降低反应温度、增加产液率等。
目前,常用的催化剂有铁基、镍基、钼基等。
其中,铁基催化剂具有活性高、稳定性好、成本低等优点,是研究的热点之一。
同时,还可以通过改变催化剂的组成和结构来调节反应产物的组成和性质,进一步提高煤直接液化技术的效果。
反应器设计是煤直接液化技术研发中的另一个重要方面。
不同的反应器设计会对反应过程和产物分布产生影响。
常见的反应器有搅拌式反应器、流化床反应器、管式反应器等。
其中,搅拌式反应器由于其较好的传热和传质性能,被广泛应用于煤直接液化技术中。
同时,还可以通过改变反应器的工艺参数,如温度、压力、气体流量等,来调节反应过程和产物品质。
在煤直接液化技术的现代化研发中,环境保护是一个不可忽视的因素。
在煤直接液化反应中,会生成大量的尾气和废水,其中含有大量的有害物质,如硫化物、氰化物等。
这些物质的排放对环境和人类健康都带来了巨大的风险。
因此,在煤直接液化技术的研发过程中,需要加强对尾气和废水的处理和治理技术的研究。
同时,还需要通过改进工艺流程,减少有害物质的生成和产生。
总之,现代化煤直接液化技术在工艺路线、催化剂、反应器设计以及环境保护等方面都取得了重要的进展。
通过不断创新和改进,煤直接液化技术有望成为重要的替代能源技术,为能源结构转型和环境保护做出重要贡献。
煤直接液化工艺流程煤直接液化,煤液化方法之一。
将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。
因过程主要采用加氢手段,故又称煤的加氢液化法。
详情如下:一、埃克森供氢溶剂法简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。
原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体燃料。
建有日处理250t煤的半工业试验装置。
其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。
首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。
反应温度425~450℃,压力10~14MPa,停留时间30~100min。
反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。
溶剂和煤浆分别在两个反应器加氢是EDS法的特点。
在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。
气态烃和油品中C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。
石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。
中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。
减压残油通过加氢裂化可得到中油和轻油。
埃克森供氢溶剂法流程图二、溶剂精炼煤法简称SRC法,是将煤用溶剂制成浆液送入反应器,在高温和氢压下,裂解或解聚成较小的分子。
此法首先由美国斯潘塞化学公司于60年代开发,继而由海湾石油公司的子公司匹兹堡-米德韦煤矿公司进行研究试验,建有日处理煤50t的半工业试验装置。
按加氢深度的不同,分为SRC-Ⅰ和SRC-Ⅱ两种。
SRC-Ⅰ法(图2)以生产固体、低硫、无灰的溶剂精炼煤为主,用作锅炉燃料,也可作为炼焦配煤的黏合剂、炼铝工业的阳极焦、生产碳素材料的原料或进一步加氢裂化生产液体燃料。
近年来,此法较受产业界重视。
SRC-Ⅱ法用于生产液体燃料,但因当今石油价格下降以及财政困难,开发工作处于停顿状态。
煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。
煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。
通过煤炭液化,不仅可以生产汽油、柴油、LPG(液化石油气)、喷气燃料,还可以提取BTX(苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。
煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。
煤炭直接加氢液化一般是在较高温度(400℃以上),高压(10MPa以上),氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。
煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。
煤与石油主要都是由C、H、O等元素组成。
煤和石油的根本区别就在于:煤的氢含量和H/C 原子比比石油低,氧含量比石油高I煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。
煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。
通过加氢,改变煤的分子结构和H/C原子比,同时脱除杂原子,煤就可以液化变成油。
1927年德国在莱那(Leuna)建立了世界上第一个煤直接液化厂,规模10×l04 t/a。
煤直接液化工艺
煤直接液化工艺是一种能够将煤转变为石油的革命性技术。
这项技术可以将煤以有利的经济效益转变为石油,以替代传统石油和其他替代能源,从而节省日益稀少的石油资源。
煤直接液化工艺的发展使得科学家们利用煤更加有效地开发石油,且减少了煤炭污染。
煤直接液化工艺的制备主要分为三个步骤:煤热解、石油生产和石油精制。
煤热解的过程,煤被加热高达2000℃,利用高温高压的状态下,改变煤的化学结构,从而将煤转换为气态物质。
石油生产则是将气态物质进一步合成为液态物质,最终得到原油;最后,精制工艺使原油精制得到合成汽油、柴油及其他含烃,如苯、乙烷等等,这就是煤直接液化工艺的完整过程。
煤直接液化工艺的应用,使得煤焦转换为液体燃料更容易、更快捷,从而消减了大量的碳排放量。
这种工艺可以从概念到实施的过程中,实现有效地利用煤炭资源,同时也减少了空气污染,形成一种绿色低碳的能源经济。
此外,煤直接液化工艺可以有效地利用煤炭资源,提高整体的煤焦炭液燃料性能,并且改善居民生活水平。
综上所述,煤直接液化工艺对于保护石油资源,环境保护和能源节约具有重要意义。
煤直接液化工艺可以有效地减少煤炭消耗,实现节能减排;另外,煤直接液化工艺可以分解、合成更多的石油和燃料,从而获得更多的可再生能源。
此外,在实现经济社会发展的同时,煤直接液化工艺也可以作为一种有效的能源节约技术,有助于改善能源利用结构,促进绿色低碳的发展。
随着人们日益重视环境保护,开发煤直接液化工艺也变得越来越重要。
为了促进能源节约,应提升煤直接液化工艺的社会应用水平,并倡导利用煤直接液化工艺维护环境的理念,以促进各方努力实施煤直接液化工艺,节省能源,保护环境。