煤直接液化概述
- 格式:pptx
- 大小:9.45 MB
- 文档页数:25
煤直接液化和煤间接液化综述摘要:煤的直接液化和间接液化技术经过长期发展,已形成了各自的工艺特征和典型工艺。
我国总的能源特征是“富煤、少油、有气”,以煤制油已成为我国能源战略的一个重要趋势。
经过长期不断努力,我国初步形成了“煤制油”产业化的雏形,在未来将迎来更多机遇和挑战。
关键字:煤直接液化煤间接液化发展历程现状前景1.煤直接液化煤直接液化又称煤加氢液化, 是将固体煤制成煤浆, 在高温高压下, 通过催化加氢裂化, 同时包括热解、溶剂萃取、非催化液化, 将煤降解和加氢从而转化为液体烃类, 进而通过稳定加氢及加氢提质等过程, 脱除煤中氮、氧、硫等杂原子并提高油品质量的技术。
煤直接液化过程包括煤浆制备、反应、分离和加氢提质等单元。
煤的杂质含量越低, 氢含量越高, 越适合于直接液化。
1.1发展历程煤直接液化技术始于二十世纪初, 1913年德国科学家Bergius首先研究了煤高压加氢, 并获得了世界上第一个煤液化专利, 在此基础上开发了著名的I G Farben工艺。
该工艺反应条件较为苛刻, 反应温度为470℃, 反应压力为70MPa。
1927年德国在Leuna建立了世界上第一个规模为0.1Mt/a的煤直接液化厂, 到第二次世界大战结束时,德国的18个煤直接液化工厂总油品生产能力已达约4.23Mt/a , 其汽油产量占当时德国汽油消耗量的50%。
第二次世界大战前后, 英国、美国、日本、法国、意大利、苏联等国也相继进行了煤直接液化技术的研究。
以后由于廉价石油的大量发现, 从煤生产燃料油变得无利可图, 煤直接液化工厂停工, 煤直接液化技术的研究处于停顿状态。
20世纪70年代,石油危机发生后, 各发达国家投人大量人力物力进行煤直接液化技术的研发, 相继开发出多种煤直接液化工艺, 但由于从20世纪80年代后期起原油价格在高位维持的时间不长,从煤生产燃料油获利的可能性较低, 这些工艺都没有实现工业化。
1.2煤直接液化技术的工艺特征典型的煤直接加氢液化工艺包括: ①氢气制备;②煤糊相(油煤浆)制备; ③加氢液化反应;④油品加工等“先并后串”四个步骤。
煤直接液化煤直接液化,煤液化方法之一。
将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。
因过程主要采用加氢手段,故又称煤的加氢液化法。
沿革煤直接液化技术早在19世纪即已开始研究。
1869年,M.贝特洛用碘化氢在温度270℃下与煤作用,得到烃类油和沥青状物质。
1914年德国化学家F.柏吉斯研究氢压下煤的液化,同年与J.比尔维勒共同取得此项试验的专利权。
1926年,德国法本公司研究出高效加氢催化剂,用柏吉斯法建成一座由褐煤高压加氢液化制取液体燃料(汽油、柴油等)的工厂。
第二次世界大战前,德国由煤及低温干馏煤焦油生产液体燃料,1938年已达到年产1.5Mt的水平,第二次世界大战后期,总生产能力达到4Mt;1935年,英国卜内门化学工业公司在英国比灵赫姆也建起一座由煤及煤焦油生产液体燃料的加氢厂,年产150kt。
此外,日本、法国、加拿大及美国也建过一些实验厂。
战后,由于石油价格下降,煤液化产品经济上无法与天然石油竞争,遂相继倒闭,甚至实验装置也都停止试验。
至60年代初,特别是1973年石油大幅度提价后,煤直接液化工作又受到重视,并开发了一批新的加工过程,如美国的溶剂精炼煤法、埃克森供氢溶剂法、氢煤法等。
埃克森供氢溶剂法简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。
原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体燃料。
建有日处理250t煤的半工业试验装置。
其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。
首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。
反应温度425~450℃,压力10~14MPa,停留时间30~100min。
反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。
溶剂和煤浆分别在两个反应器加氢是EDS法的特点。
在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。
煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。
煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H 2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。
通过煤炭液化,不仅可以生产汽油、柴油、LPG (液化石油气)、喷气燃料,还可以提取BTX (苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。
煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S 再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913 年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。
煤炭直接加氢液化一般是在较高温度(400 C以上),高压(10MPa以上),氢气(或CO+H 2,C0+H20)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。
煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。
煤与石油主要都是由C、H、O 等元素组成。
煤和石油的根本区别就在于:煤的氢含量和H/C原子比比石油低,氧含量比石油高I 煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。
煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。
通过加氢,改变煤的分子结构和H/C 原子比,同时脱除杂原子,煤就可以液化变成油。
煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。
煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。
通过煤炭液化,不仅可以生产汽油、柴油、LPG(液化石油气)、喷气燃料,还可以提取BTX(苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。
煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。
煤炭直接加氢液化一般是在较高温度(400℃以上),高压(10MPa以上),氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。
煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。
煤与石油主要都是由C、H、O等元素组成。
煤和石油的根本区别就在于:煤的氢含量和H/C 原子比比石油低,氧含量比石油高I煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。
煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。
通过加氢,改变煤的分子结构和H/C原子比,同时脱除杂原子,煤就可以液化变成油。
1927年德国在莱那(Leuna)建立了世界上第一个煤直接液化厂,规模10×l04 t/a。
煤直接液化工艺
煤直接液化工艺是一种能够将煤转变为石油的革命性技术。
这项技术可以将煤以有利的经济效益转变为石油,以替代传统石油和其他替代能源,从而节省日益稀少的石油资源。
煤直接液化工艺的发展使得科学家们利用煤更加有效地开发石油,且减少了煤炭污染。
煤直接液化工艺的制备主要分为三个步骤:煤热解、石油生产和石油精制。
煤热解的过程,煤被加热高达2000℃,利用高温高压的状态下,改变煤的化学结构,从而将煤转换为气态物质。
石油生产则是将气态物质进一步合成为液态物质,最终得到原油;最后,精制工艺使原油精制得到合成汽油、柴油及其他含烃,如苯、乙烷等等,这就是煤直接液化工艺的完整过程。
煤直接液化工艺的应用,使得煤焦转换为液体燃料更容易、更快捷,从而消减了大量的碳排放量。
这种工艺可以从概念到实施的过程中,实现有效地利用煤炭资源,同时也减少了空气污染,形成一种绿色低碳的能源经济。
此外,煤直接液化工艺可以有效地利用煤炭资源,提高整体的煤焦炭液燃料性能,并且改善居民生活水平。
综上所述,煤直接液化工艺对于保护石油资源,环境保护和能源节约具有重要意义。
煤直接液化工艺可以有效地减少煤炭消耗,实现节能减排;另外,煤直接液化工艺可以分解、合成更多的石油和燃料,从而获得更多的可再生能源。
此外,在实现经济社会发展的同时,煤直接液化工艺也可以作为一种有效的能源节约技术,有助于改善能源利用结构,促进绿色低碳的发展。
随着人们日益重视环境保护,开发煤直接液化工艺也变得越来越重要。
为了促进能源节约,应提升煤直接液化工艺的社会应用水平,并倡导利用煤直接液化工艺维护环境的理念,以促进各方努力实施煤直接液化工艺,节省能源,保护环境。
煤制油煤制油包括直接液化和间接液化两种工艺技术路线。
1.煤炭直接液化技术煤在高压和一定温度下直接与氢气反应生成液体燃料油的工艺技术称为直接液化。
煤炭直接液化主要产品为汽油、柴油、航空煤油、石脑油、LPG(液化石油气),另外还可以提取BTX(苯、甲苯、二甲苯),副产品有硫磺、氨或尿素等。
直接液化工艺的产品中,柴油的比例在60~70%,汽油和LPG占40~30%左右。
直接液化的工艺主要有Exxon供氢溶剂法(EDS)。
氢-煤法等。
EDS法是煤浆在循环的供氢溶剂中与氢混合,溶剂首先通过催化器,拾取氢原子,然后通过液化反应器,释放出氢原子,使煤分解。
氢-煤法是采用沸腾床反应器,直接加氢将煤转化成液体燃料。
直接液化过程流程现代煤炭直接液化技术提高了产品质量,特别是通过液化后的提质加工工艺,使液化油通过加氢精制、重整、加氢裂化,可得到合格的汽油、柴油或航空煤油。
尤其是柴油的凝点很低,可以在高寒地区使用,所得航空煤油的比重较大,同样容积的油箱可使飞机的续航距离增加。
2. 煤炭间接液化技术间接液化是把煤炭先气化再合成,煤在高温下与氧气和水蒸气反应生成合成反应气(CO+H2),合成反应气再经F-T合成催化反应合成液体燃料及其化学品。
煤炭间接液化主要产品为汽油、柴油、航空煤油、石脑油、LPG、以及乙烯、丙稀等重要化工原料,副产品有α烯烃、硬蜡、氨、醇、酮、焦油、硫磺、煤气等。
间接液化的产品品种是可以变通的,即可以生产油品,又可以根据市场需要加以调节,生产高附加值、价格高、市场紧缺的化工产品。
对中国的石油产品市场而言,以优质石脑油和高质量柴油、烯烃、LPG 和石蜡等产品为好。
另外烯烃的价值较高,LPG也是市场紧俏物资。
此外我国石蜡生产和销售市场上,高熔点微晶蜡缺口较大,高品位润滑油也是国内比较紧缺的。
因此,汽油、柴油与高附加值的润滑油、微晶蜡等市场紧缺的产品并举,可以作为合成油产品的主攻方向。
间接液化在可控制的条件下进行合成,获得的柴油的十六烷值达70,且低硫、无芳烃,既可直接供给环保要求高的地区使用,也可作为优质油与其它油品调配。
成绩中国矿业大学2011 级本科课程考试试卷考试科目学科前沿讲座考试时间2014年12月学生姓名彭玉斌学生学号06112931所在院系化工学院任课教师周敏教授等多名教师题目:煤炭液化技术煤炭液化技术摘要;煤炭液化技术包括煤炭直接液化和煤炭间接液化,是属于洁净煤技术的一种。
文章简要论述了煤炭直接接液化技术和煤炭间接液化技术的化学反应机理和化学反应过程;回顾了液化技术的发展历史,国外煤液化技术的发展状况;介绍了我国煤碳液化的现状;展望今后煤炭液化的发展方向。
关键字:煤炭;直接液化;间接液化所谓煤炭液化是指,固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。
根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类。
1煤炭直接液化概述煤与石油都是由碳、氢、氧为主的元素组成的天然有机矿物燃料。
只是煤中氢含量及H/C原子比,较石油相比要低很多。
要将煤转化为液体产物,必须在适当的温度、氢压、溶剂和催化剂的条件下,将煤中的大分子裂解为小分子,进而加氢稳定,降低H/C原子比,从而得到液体产物。
1.1煤直接液化的化学反应一般认为煤直接液化的过程是煤在溶剂、催化剂和高压氢气存在下,随着温度的升高,煤开始在溶剂中膨胀形成胶体体系。
煤进行局部溶解,并发生煤有机质的分裂、解聚,同时在煤有机质与溶剂间进行氢分配,于350~400℃左右生成沥青质含量较高的高分子物质。
在此过程中主要发生煤的热解、自由基加氢稳定、自由基缩合以及氮、氧、硫元素杂元素的脱除等一系列反应。
其主要反应是自由基的生成和加氢稳定。
自由基稳定后可生成分子量小的馏分油,分子量大的沥青烯,及分子量更大前沥青烯。
前沥青烯可进一步分解为分子量较小的沥青烯、馏分油和烃类气体。
同样沥青烯通过加氢可进一步生成馏分油和烃类气体。
如果煤的自由基得不到氢而它的浓度又很大时,这些自由基碎片就会互相结合而生成分子量更大的化合物甚至生成焦炭。
图1表示了煤热解产生自由基以及溶剂向自由基供氢、溶剂和前沥青烯、沥青烯加氢的过程:1.2煤直接液化技术的发展历程煤直接加氢液化一般是在较高温度,高压,氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤进行解聚、裂解加氢,直接转化为液体油的加工过程。
名词解释煤的直接液化煤的直接液化是一种将煤转化为液体燃料的技术过程。
通过在高温和高压下,将固态煤转化为液体燃料,可以有效提高煤的能源利用率和减少对环境的污染。
随着全球能源需求的不断增长和化石能源资源的日益稀缺,煤的直接液化技术受到了广泛的关注。
这项技术被认为是一种可行的替代能源发展方向,因为煤作为世界上最丰富的化石能源之一,具有丰富的储量和广泛的分布。
煤的直接液化技术主要有两个步骤:煤的气化和液化。
首先,在高温和缺氧条件下进行煤的气化,将固态煤转化为气体,主要产生一氧化碳(CO)和氢气(H2)等气体。
然后,在催化剂的作用下,将气态产物加氢反应,转化为液体燃料。
煤的直接液化技术的优势之一是可以有效降低煤的硫、氮等有害元素的含量。
在气化过程中,硫和氮等元素主要以气体的形式从煤中释放出来,而在液化过程中,通过催化剂的作用,这些有害元素可以被氢气还原,并形成硫化氢和氨等易于分离和处理的物质。
因此,煤的直接液化技术能够减少燃煤产生的大气污染和酸雨等环境问题。
此外,煤的直接液化技术还可以提高煤的能源利用效率。
相比于传统的燃煤发电和重油加工等过程,煤的直接液化技术可以将固态煤转化为液体燃料,包括柴油、液化石油气等。
这些燃料不仅具有更高的能源密度,而且燃烧效率也更高,能够充分释放煤的能量潜力。
因此,煤的直接液化技术在能源转型和能源结构调整方面具有重要意义。
然而,煤的直接液化技术也存在一些挑战和问题。
首先,该技术需要高温和高压等特殊的工艺条件,设备成本较高。
其次,液化过程中会产生大量的副产物,如焦化油、渣油等,对环境造成一定的负面影响。
此外,液化过程中所需的氢气等原料也会增加能源消耗和碳排放。
因此,如何有效处理这些副产物和减少能源消耗,是煤的直接液化技术亟待解决的问题。
总的来说,煤的直接液化技术具有可行性和重要性,可以有效提高煤的能源利用率和减少环境污染。
尽管存在一些挑战和问题,但通过技术创新和工艺改进,可以进一步提升该技术的经济性和环境友好性。