扫描电子显微镜SEM
- 格式:ppt
- 大小:5.38 MB
- 文档页数:88
扫描电子显微镜(Scanning Electronic Microscopy, SEM)扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。
扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。
目前的扫描电镜都配有X 射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。
电子束与固体样品的相互作用扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。
通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。
具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。
电子束和固体样品表面作用时的物理现象一、背射电子背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。
弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。
非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。
非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。
从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。
背反射电子的产生范围在100nm-1mm深度,如下图所示。
电子束在试样中的散射示意图背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。
背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。
二、二次电子二次电子是指背入射电子轰击出来的核外电子。
扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM是一种强大的实验仪器,它能够帮助我们开启微观世界的大门,从而深入了解物质在最基本层面的性质和结构。
本文将在以下几个方面对SEM及其应用进行介绍。
一、扫描电子显微镜SEM的原理扫描电子显微镜SEM是一种采用电子束的显微镜,通过高能电子束与样品相互作用,透过扫描线圈产生扫描信号,实现对样品表面形貌的观察和获取高清晰度的图像。
SEM和光学显微镜有很大的不同,光学显微镜是使用光来观察物质的显微镜,而SEM则是使用电子来观察物质。
扫描电子显微镜SEM的工作原理主要分为以下三个步骤:1、获得高能电子束:扫描电子显微镜SEM内部有个电子枪,电子枪发射出的电子经过加速器的加速器和聚焦极的聚焦,成为高能电子束。
2、扫描样品表面:高能电子束射向样品表面,样品表面反弹回来的电子信号被SEM仪器捕获。
3、产生扫描信号:把从样品表面反弹回来的电子信号进行放大,形成显微图像。
二、能谱仪的原理能谱仪是SEM中的重要组成部分,它可以检测电子在样品中的反应和监测样品中所含的化学元素,以及相应元素的含量。
能谱仪的工作原理是通过检测样品产生的X射线来分析样品组成,电子束与样品相互作用,产生一系列的X射线能量峰值。
每个元素都有不同能级的电子,其X射线产生的能量也分别对应不同的峰值。
因此,通过表征能谱仪所发现的不同X射线能量峰的位置和强度,可以确定样品中所含元素。
三、SEM的应用1、矿物学SEM被广泛应用于矿物学研究中,因为它能够提供很高的图像分辨率。
将样品与高能电子束相互作用可使样品表面反射的电子被收集,从而形成高分辨率的矿物学图像。
2、材料科学在材料科学中,SEM被用于表面形貌研究以及微观结构解析。
通过SEM可以获取材料的内部结构和力学特性,为材料研发和工业应用提供了有力支持。
3、医学SEM在医学领域也有极为重要的应用,例如用于人体组织医学研究。
SEM可以提供高质量且精细的人体组织图像,进一步促进了医学领域的研究和治疗。
扫描电子显微镜扫描电子显微镜是一种强大的工具,它可以帮助科学家观察到物质的更小的细节和结构。
本文将介绍扫描电子显微镜的原理、应用、发展历程以及未来发展趋势。
原理扫描电子显微镜(Scanning Electron Microscopy,SEM)是一种利用扫描电子束与物体相互作用而获得形貌和微区组织信息的显微分析仪器。
扫描电子显微镜的工作原理是,将高能电子轰击样品表面,使其表面电子被激发,发射出大量的二次电子。
这些二次电子被探测器接收并转换成负电荷信号,在特定条件下被扫描成像。
应用扫描电子显微镜广泛应用于多个领域,包括材料科学、生命科学、化学和地质学等。
以下是该技术在这些领域中的应用:•材料科学:用于获取材料的形貌、结构以及表面性质等信息。
•生命科学:用于观察细胞、细胞器、细胞表面的超微结构和蛋白质等生物分子的形态和结构。
•化学:用于观察化学反应过程表面形貌、结构的变化以及材料结构的演化过程等。
•地质学:用于研究各种矿物、岩石和地层等,以了解地质演化过程。
发展历程1950年,发明了透射式电子显微镜,但它只能用于真空环境下的样品。
1956年,Helmut Ruska和Max Knoll发明了扫描电子显微镜。
该技术能够在空气中观察样品,并获得更高的象素分辨率。
1965年, Hitachi公司普及了第一台商用扫描电子显微镜S-800。
自此以后,扫描电子显微镜技术得到了快速的发展。
未来发展趋势随着技术的发展,扫描电子显微镜的应用场景不断扩大。
今后,该技术将越来越多地应用于纳米材料和微细加工领域。
同时,随着计算机技术的发展,扫描电子显微镜将会实现更高的自动化和智能化,成为更加强大的工具。
结论扫描电子显微镜是一款横跨多个领域应用的重要科学工具,其在材料科学、生命科学、化学和地质学等领域均有广泛的应用。
虽然该技术已经发展多年,但随着技术和计算机技术的不断进步,扫描电子显微镜将会越来越强大,为人们探索科学世界提供更加强大的支持。
扫描电镜(SEM)简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束对样品表面进行扫描的显微镜。
相比传统的光学显微镜,SEM具有更高的分辨率和更大的深度视野,使得它成为材料科学、生命科学和物理科学等领域中常用的研究工具。
SEM通过利用电子多次反射,将样品表面的形貌细节放大数千倍,可以观察到微观结构,比如表面形态、粗糙度、纳米级颗粒等。
SEM通常需要真空环境下操作,因为电子束在大气压下很快会失去能量而无法达到高分辨率。
工作原理SEM的工作原理可以简单地分为以下几步:1.电子发射:SEM中,通过热发射或场发射的方式产生电子束。
这些电子被加速器加速,形成高速的电子流。
电子束的能量通常在10-30 keV之间。
2.样品照射:电子束通过一个聚焦系统照射到样品表面。
电子束与样品原子发生相互作用,从而产生各种现象,比如电子散射、透射和反射。
3.信号检测:样品与电子束发生相互作用后,产生的信号会被探测器捕获。
常见的SEM信号检测器包括二次电子检测器和反射电子检测器。
这些探测器可以测量电子信号的强度和性质。
4.信号处理和图像生成:SEM通过对探测到的信号进行处理和放大,生成图像。
这些图像可以显示出样品表面的微观结构和形貌。
应用领域SEM在许多科学领域中都有广泛的应用。
以下是一些常见的应用领域:材料科学SEM可以用于研究材料的结构和形态。
它可以观察微观缺陷、晶体结构、纳米颗粒等材料细节。
这对于材料工程师来说非常重要,可以帮助他们改进材料的性能和开发新的材料。
生命科学SEM可以用于观察生物样品的微观结构。
比如,它可以观察细胞的形态、细胞器的分布和细胞表面的纹理。
这对于生物学家来说非常重要,可以帮助他们了解生物体的结构和功能。
纳米科学SEM在纳米科学领域中也有广泛的应用。
通过SEM可以对纳米材料进行表面形貌和结构的观察。
它可以显示出纳米结构的细节,帮助科学家研究纳米颗粒的组装、层析和相互作用等现象。
SEM(扫描电子显微镜)的原理
SEM是一种通过高能电子束扫描样品表面并利用其所产生的
信号来形成图像的显微镜。
其原理是利用电子束与样品表面交互所产生的各种信号(如二次电子、反射电子、散射电子、背散射电子等)作为样品表面形貌信息的载体,经过放大和成像后形成对样品表面形貌的图像。
具体来说,SEM的主要原理包括:
1. 高能电子束的产生
SEM使用的电子束通常由热阴极或场发射型阴极产生。
电子
从阴极中发射出来后,经过加速管加速到几千伏至数十万伏的高能电子束。
2. 电子束的聚焦
SEM使用电磁聚焦系统将电子束聚焦到非常小的点上,从而
实现高分辨率成像。
聚焦系统通常由多组圆柱形或双凸透镜组成。
3. 样品表面的交互
高能电子束照射样品表面时,会与样品表面相互作用,产生各种不同的信号。
这些信号包括二次电子、反射电子、散射电子、背散射电子等,它们可以提供关于样品表面形貌、成分和结构的信息。
4. 信号的检测和处理
SEM的检测系统通常由二次电子检测器、反射电子检测器、消旋极检测器等多种类型的检测器组成。
这些检测器负责收集和处理样品表面产生的各种信号,经过放大和成像等处理后,成为最终的SEM图像。
综上所述,SEM主要通过高能电子束和样品表面信号的交互来实现图像的成像和分析。
它能够观察到样品表面微观结构的形貌、成分和表面化学性质等信息,具有广泛的应用价值。
利用扫描电子显微镜获取材料表面形貌信息扫描电子显微镜(Scanning Electron Microscope,SEM)是一种用于观察和分析材料表面形貌的高分辨率显微镜。
利用其高能电子束和探测器,SEM可以提供高放大倍率和出色的表面清晰度,为研究人员提供详细的材料表面形貌信息。
本文将介绍扫描电子显微镜的原理,操作方法以及其在材料科学中的应用。
首先,让我们来了解一下扫描电子显微镜的工作原理。
SEM采用的是电子束扫描观察的原理。
它通过在材料上扫描射出高能电子束,当电子束与样品表面相互作用时,会发生多种与电子互作用的物理现象,如散射、逸出电子和背散射等。
SEM探测器将这些信号转换成图像,并以高分辨率的方式显示在显示器上。
此外,SEM还可以利用特殊的探头扫描电子显微镜,通过测量振荡电势,进一步获得材料的表面化学成分分布。
接下来,我们将介绍如何操作扫描电子显微镜来获取材料表面形貌信息。
首先,样品需要被制备成适合SEM观察的形式。
通常情况下,需要将样品表面进行金属或碳层涂覆,以增加导电性,然后将样品固定在SEM样品支架上。
样品准备的质量直接影响着SEM观察结果的准确性和可靠性,因此样品制备过程一定要严格控制。
接下来,将样品装载到SEM的样品舱中,关闭操作室门,开始抽真空。
当真空达到要求后,可以开始调整SEM的参数,如电子束加速电压、工作距离和探测器的选择等。
一旦调整完毕,可以将电子束聚焦在样品表面并开始扫描。
同时,可以调整探测器的位置和参数,以获得不同深度的信息。
最后,观察和记录SEM图像,并进一步分析和处理图像数据,以获得材料表面的形貌和结构信息。
扫描电子显微镜在材料科学中有着广泛的应用。
首先,SEM可以用于研究微观结构和形貌。
通过观察样品的表面形貌,可以获得材料的纹理、粗糙度、颗粒大小等信息,帮助研究人员了解材料的制备过程和性能。
其次,SEM还可以帮助分析材料的化学成分分布。
通过能谱仪等设备,可以测量样品表面的元素分布情况,从而研究材料的成分和相对丰度。
扫描电子显微镜工作原理
扫描电子显微镜(Scanning Electron Microscope,SEM)是一种利用电子束扫描样品表面并通过感应信号形成显像的仪器。
其工作原理如下:
1. 电子源发射电子束:SEM中有一个电子枪,用于产生高能电子。
电子枪中通常会使用热阴极,通过加热或电子轰击方式将电子从阴极中释放出来。
2. 高能电子束聚焦:释放出来的电子会受到聚焦系统的控制,将电子束聚焦成一个非常细小的束斑。
聚焦系统通常包括透镜或电磁镜等。
3. 电子束扫描:经过聚焦的电子束被定向扫描到样品表面。
样品通常需要先制备成非导电表面或镀上导电层,以便电子束能够顺利地与样品相互作用。
4. 电子-样品相互作用:电子束与样品表面相互作用会产生多种效应,如散射、反射、透射等。
其中最常用的效应是二次电子发射(secondary electron emission)和后向散射电子(backscattered electron)的产生。
5. 信号收集:通过安装在SEM中的多种探测器,可以收集和测量与电子-样品相互作用相关的信号。
常用的探测器包括:二次电子探测器、后向散射电子探测器、X射线能谱仪等。
6. 信号转换和处理:收集到的信号会经过放大、滤波、数字化
等处理,并转化成图像或谱图。
7. 图像显示:最后,处理好的信号通过计算机和显示器进行图像重建和显示,使得研究人员可以观察到样品表面的微观结构和形貌。
扫描电子显微镜通过以上步骤实现样品表面的高分辨率成像,并能提供有关样品表面化学元素的分布信息。
它在材料科学、生物学、纳米学等领域发挥着重要作用。