扫描电镜(SEM)讲解
- 格式:ppt
- 大小:6.14 MB
- 文档页数:34
扫描电镜(SEM)简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束对样品表面进行扫描的显微镜。
相比传统的光学显微镜,SEM具有更高的分辨率和更大的深度视野,使得它成为材料科学、生命科学和物理科学等领域中常用的研究工具。
SEM通过利用电子多次反射,将样品表面的形貌细节放大数千倍,可以观察到微观结构,比如表面形态、粗糙度、纳米级颗粒等。
SEM通常需要真空环境下操作,因为电子束在大气压下很快会失去能量而无法达到高分辨率。
工作原理SEM的工作原理可以简单地分为以下几步:1.电子发射:SEM中,通过热发射或场发射的方式产生电子束。
这些电子被加速器加速,形成高速的电子流。
电子束的能量通常在10-30 keV之间。
2.样品照射:电子束通过一个聚焦系统照射到样品表面。
电子束与样品原子发生相互作用,从而产生各种现象,比如电子散射、透射和反射。
3.信号检测:样品与电子束发生相互作用后,产生的信号会被探测器捕获。
常见的SEM信号检测器包括二次电子检测器和反射电子检测器。
这些探测器可以测量电子信号的强度和性质。
4.信号处理和图像生成:SEM通过对探测到的信号进行处理和放大,生成图像。
这些图像可以显示出样品表面的微观结构和形貌。
应用领域SEM在许多科学领域中都有广泛的应用。
以下是一些常见的应用领域:材料科学SEM可以用于研究材料的结构和形态。
它可以观察微观缺陷、晶体结构、纳米颗粒等材料细节。
这对于材料工程师来说非常重要,可以帮助他们改进材料的性能和开发新的材料。
生命科学SEM可以用于观察生物样品的微观结构。
比如,它可以观察细胞的形态、细胞器的分布和细胞表面的纹理。
这对于生物学家来说非常重要,可以帮助他们了解生物体的结构和功能。
纳米科学SEM在纳米科学领域中也有广泛的应用。
通过SEM可以对纳米材料进行表面形貌和结构的观察。
它可以显示出纳米结构的细节,帮助科学家研究纳米颗粒的组装、层析和相互作用等现象。
扫描电子显微镜(Scanning Electron Microscope)基础知识一、扫描电子显微镜的工作原理扫描电镜是用聚焦电子束在试样表面逐点扫描成像。
试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。
其中二次电子是最主要的成像信号。
由电子枪发射的能量为 5 ~ 35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。
聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。
二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。
二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~ 30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。
(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。
(3) 放大倍数变化范围大,一般为 15 ~ 200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。
(4) 具有相当高的分辨率,一般为 3.5 ~ 6nm。
(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。
采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。
(6) 可进行多种功能的分析。
与 X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。
(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。
三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。
【材料课堂】一文全面了解SEM扫描电镜文章来源:材料基、材料科学与工程近年来,由于各种应用中使用的材料尺寸的不断缩小,扫描电子显微镜(SEM)已成为用于材料表征的强大且通用的工具。
在这篇文章中,我们解释了SEM是什么,并描述了SEM仪器的主要工作原理。
什么是SEM?SEM(Scanning Electron Microscope)代表扫描电子显微镜。
电子显微镜使用电子进行成像,就像光学显微镜使用可见光一样。
SEM使用聚焦的高能电子束在固体样品表面产生各种信号。
来自电子-样品相互作用的信号揭示了样品的信息,包括外部形态(纹理),化学成分,以及构成样品的材料的晶体结构和取向。
在大多数应用中,在样本表面的选定区域上收集数据,并生成显示这些属性的空间变化的二维图像。
由于电子的波长远小于光的波长,因此SEM的分辨率优于光学显微镜的分辨率。
图1:SEM工作示意图SEM技术如何工作?SEM 的示意图如图2 所示。
在这种的电子显微镜中,电子束以光栅模式逐行扫描样品。
首先,电子由腔室顶端的电子源(俗称灯丝)产生。
电子束发射是因为热能克服了材料的功函数。
他们随后被加速并被带正电的阳极所吸引。
整个电子腔需要处于真空环境中。
像所有的电子显微镜部件一样,为了保持真空并且防止污染、震动和噪声,灯丝被密封在一个特殊的腔室中。
真空不仅可以保持灯丝不受污染,也可以让使用者获得高分辨率。
如果缺乏真空,其它原子和分子就会存在于腔室中。
他们和电子相互作用就会导致电子束偏转,成像质量降低。
此外,高真空增加了腔室中探头的电子接收效率。
图2:基本SEM组件的示意图与光学显微镜类似,扫描电镜 SEM 使用透镜来控制电子的路径。
因为电子不能透过玻璃,这里所用的是电磁透镜。
他们简单的由线圈和金属极片构成。
当电流通过线圈,就会产生磁场。
电子对磁场十分敏感,电子在显微镜腔室的路径就可以由这些电磁透镜控制;调节电流大小可以控制磁场强度。
通常,电磁透镜有两种:会聚镜,电子通往样品时首先遇到的透镜。
SEM的原理及应用科普1. SEM简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束与样品相互作用来观察样品表面形貌的仪器。
与光学显微镜相比,SEM具有更高的分辨率和更大的深度。
SEM的工作原理基于电子束与样品的相互作用,通过测量电子束与样品之间的相互作用来获得样品的表面形貌和组成信息。
SEM广泛应用于材料科学、生物学、化学等领域。
2. SEM的工作原理SEM通过加速电子束并将其聚焦到非常小的面积上,使电子束成为微观世界的“探针”,与样品表面进行相互作用。
当电子束与样品表面相互作用时,会发生多种现象,包括电子-电子散射、电子-原子核散射、二次电子发射等。
基于这些相互作用,SEM可以获得关于样品表面形貌和组成的详细信息。
SEM的工作原理可以简要概括为以下几个步骤: - 加速电子束:使用高压来加速电子束,使其具有较高的动能。
- 聚焦电子束:通过透镜系统将电子束聚焦到非常小的面积上,以增加分辨率。
- 扫描样品表面:通过扫描线圈或扫描电子束的方式,使电子束在样品表面上进行规律的扫描,从而获得整个样品的图像。
- 检测电子信号:当电子束与样品表面相互作用时,会发生多种电子信号的产生,包括二次电子、背散射电子等。
SEM通过探测这些电子信号来获得关于样品的信息。
- 图像处理和显示:SEM获得的电子信号经过处理和解析,最终转化为样品表面形貌和组成的图像。
3. SEM的应用领域SEM在各个科学领域都有广泛的应用。
3.1 材料科学在材料科学领域,SEM常被用来观察材料的微观结构和表面形貌。
SEM可以揭示材料的晶体结构、相界面、微观缺陷等信息,对于材料的研究和开发具有重要意义。
此外,SEM还可以进行能谱分析,获得材料的组成信息,提供辅助分析的数据。
3.2 生物学SEM在生物学领域的应用主要集中在生物样品的形态学研究方面。
通过SEM,可以观察到生物样品的细胞形态、细胞器的形貌以及细菌和病毒等微生物的形态特征。
扫描电子显微镜(SEM)介绍(SEM)扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。
1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。
经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。
近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。
目录扫描电镜的特点扫描电镜的结构工作原理扫描电镜的特点和光学显微镜及透射电镜相比,扫描电镜SEM(Scanning Electron Microscope)具有以下特点:(一) 能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。
(二) 样品制备过程简单,不用切成薄片。
(三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。
(四) 景深大,图象富有立体感。
扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。
(五) 图象的放大范围广,分辨率也比较高。
可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。
分辨率介于光学显微镜与透射电镜之间,可达3nm。
(六) 电子束对样品的损伤与污染程度较小。
(七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。
扫描电镜的结构1.镜筒镜筒包括电子枪、聚光镜、物镜及扫描系统。
其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。
2.电子信号的收集与处理系统在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。
在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至几十nm的区域,其产生率主要取决于样品的形貌和成分。