扫描电镜 SEM
- 格式:ppt
- 大小:2.43 MB
- 文档页数:40
扫描电子显微镜(Scanning Electronic Microscopy, SEM)扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。
扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。
目前的扫描电镜都配有X 射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。
电子束与固体样品的相互作用扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。
通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。
具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。
电子束和固体样品表面作用时的物理现象一、背射电子背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。
弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。
非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。
非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。
从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。
背反射电子的产生范围在100nm-1mm深度,如下图所示。
电子束在试样中的散射示意图背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。
背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。
二、二次电子二次电子是指背入射电子轰击出来的核外电子。
_扫描电镜与电子探针分析扫描电镜(Scanning Electron Microscope,SEM)和电子探针分析(Energy Dispersive X-ray Spectroscopy,EDS)是现代材料科学和纳米技术领域中广泛应用的两种重要分析技术。
本文将分别介绍扫描电镜和电子探针分析的原理、仪器结构和应用。
一、扫描电镜(SEM)扫描电镜是一种基于电子束的显微镜,通过聚焦的电子束对样品表面进行扫描,获得高分辨率的图像。
相比传统光学显微镜,SEM具有更高的分辨率和更大的深度聚焦能力。
SEM的工作原理如下:1.电子源:SEM使用热阴极电子枪产生的高速电子束。
电子束由一根细丝产生,经过加热后电子从细丝上发射出来。
2.透镜系统:电子束经过电子透镜系统进行聚焦和调节。
透镜系统包括几个电磁透镜,用于控制电子束的聚焦和扫描。
3.样品台:样品台用于固定样品并扫描表面。
样品通常需要涂覆导电性材料,以便电子束可以通过样品表面。
4.探测器:SEM使用二次电子和背散射电子探测器来检测从样品表面散射的电子。
这些探测器可以转化为图像。
SEM可以提供高分辨率的表面形貌图像,并通过电子束的反射和散射来分析样品的成分、孔隙结构和晶体结构等。
其应用广泛,包括材料科学、纳米技术、电子器件等领域。
二、电子探针分析(EDS)电子探针分析是一种基于X射线的成分分析技术,常与扫描电镜一同使用。
EDS可以对样品的元素成分进行快速准确的定性和定量分析。
其工作原理如下:1.探测器:EDS使用一个固态半导体探测器来测量从样品发射的X射线。
当样品受到电子束轰击时,样品中的元素原子被激发并发射出特定能量的X射线。
2.能谱仪:EDS使用能谱仪来分析探测到的X射线,该仪器能够将X 射线能量转换成电压信号,并进行信号处理和分析。
3.能量分辨率:EDS的精度取决于能谱仪的能量分辨率,分辨器的能量分辨率越高,分析结果越准确。
4.谱库:EDS使用事先建立的元素谱库进行定性和定量分析。
扫描电镜(SEM)简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束对样品表面进行扫描的显微镜。
相比传统的光学显微镜,SEM具有更高的分辨率和更大的深度视野,使得它成为材料科学、生命科学和物理科学等领域中常用的研究工具。
SEM通过利用电子多次反射,将样品表面的形貌细节放大数千倍,可以观察到微观结构,比如表面形态、粗糙度、纳米级颗粒等。
SEM通常需要真空环境下操作,因为电子束在大气压下很快会失去能量而无法达到高分辨率。
工作原理SEM的工作原理可以简单地分为以下几步:1.电子发射:SEM中,通过热发射或场发射的方式产生电子束。
这些电子被加速器加速,形成高速的电子流。
电子束的能量通常在10-30 keV之间。
2.样品照射:电子束通过一个聚焦系统照射到样品表面。
电子束与样品原子发生相互作用,从而产生各种现象,比如电子散射、透射和反射。
3.信号检测:样品与电子束发生相互作用后,产生的信号会被探测器捕获。
常见的SEM信号检测器包括二次电子检测器和反射电子检测器。
这些探测器可以测量电子信号的强度和性质。
4.信号处理和图像生成:SEM通过对探测到的信号进行处理和放大,生成图像。
这些图像可以显示出样品表面的微观结构和形貌。
应用领域SEM在许多科学领域中都有广泛的应用。
以下是一些常见的应用领域:材料科学SEM可以用于研究材料的结构和形态。
它可以观察微观缺陷、晶体结构、纳米颗粒等材料细节。
这对于材料工程师来说非常重要,可以帮助他们改进材料的性能和开发新的材料。
生命科学SEM可以用于观察生物样品的微观结构。
比如,它可以观察细胞的形态、细胞器的分布和细胞表面的纹理。
这对于生物学家来说非常重要,可以帮助他们了解生物体的结构和功能。
纳米科学SEM在纳米科学领域中也有广泛的应用。
通过SEM可以对纳米材料进行表面形貌和结构的观察。
它可以显示出纳米结构的细节,帮助科学家研究纳米颗粒的组装、层析和相互作用等现象。
扫描电镜sem数据处理方法
扫描电镜(SEM)是一种常用的高分辨率显微镜,它可以用来观
察材料的表面形貌和微观结构。
对于SEM数据的处理方法,可以从
多个角度来进行讨论:
1. 图像预处理,SEM图像通常会受到噪声、伪影等影响,因此
在处理之前需要进行图像预处理。
这包括去噪、增强对比度、平滑
化等操作,以提高图像质量和清晰度。
2. 分析与测量,SEM图像处理的一个重要方面是对图像中的微
观结构进行分析和测量。
这可以通过图像分割、特征提取、形态学
分析等方法来实现,从而获取颗粒大小、形状分布、孔隙度等参数。
3. 三维重建,有时候需要对SEM图像进行三维重建,以更好地
理解样品的微观结构。
这可以通过多视角图像融合、体素重建等方
法来实现,从而获得更全面的信息。
4. 能谱分析,SEM联用能谱仪(EDS)可以获取样品的元素成
分信息。
对于SEM-EDS数据,处理方法包括峰识别、背景校正、元
素定量分析等,以获得准确的元素含量和分布信息。
5. 数据可视化,最后,处理后的SEM数据可以通过各种可视化手段展示,比如二维图像、三维模型、颜色映射等,以便更直观地呈现样品的微观结构和特征。
总的来说,SEM数据处理方法涉及到图像预处理、分析测量、三维重建、能谱分析和数据可视化等多个方面,需要根据具体的应用目的和样品特性来选择合适的方法和工具。
希望这些信息对你有所帮助。
扫描电镜sem原理扫描电镜(Scanning Electron Microscope,简称SEM)是一种利用电子束来探测样品表面形貌和组成的仪器。
相较于光学显微镜,SEM具有更高的分辨率和更大的深度。
SEM的原理基于电子束与样品的相互作用。
SEM仪器主要由电子枪、电磁透镜、样品台、检测器和图像处理系统等部分组成。
首先,电子枪会产生高能电子;电子枪的基本构造是热阴极结构,利用热力学效应将钨丝加热到很高的温度,使其发射出的电子形成电子流。
然后,电子束经过电磁透镜的调节,变为聚焦的电子束,以控制电子束的聚束程度和尺寸。
接下来,电子束照射到样品表面,与样品中的原子和分子相互作用,产生多种效应。
主要有弹性散射、非弹性散射和辐射损失等。
其中,弹性散射主要是由电子与核相互作用,产生连续背散射电子,这些电子进入检测器成为信号的一部分。
非弹性散射主要由电子与样品表面的原子和分子发生相互作用,使得样品表面产生次级电子(secondary electrons)和反射电子(backscattered electrons),这些电子也会成为信号的一部分。
样品台部分是用于固定样品的部分,并且可以调节样品的位置。
样品台通常在一个真空室内,以防止电子束与空气相互作用的影响。
检测器是对散射的电子进行检测和放大的装置。
常用的检测器有二次电子检测器和反射电子检测器。
二次电子检测器能够检测到样品表面的微观拓扑特征,反射电子检测器则能够提供样品表面的元素成分信息。
最后,图像处理系统将检测到的信号转化为图像。
图像处理系统可以对信号进行增强、调整和数字化处理。
通常,SEM可以生成高分辨率、三维感的图像。
综上所述,SEM利用电子束与样品的相互作用原理,通过产生和检测电子散射的方式,实现对样品表面形貌和元素成分等的研究。
它具有较高的分辨率和更大的深度,广泛应用于材料科学、生物学、地质学等领域,为科学研究和技术发展提供了强大的工具。
扫描电子显微镜(Scanning Electronic Microscopy, SEM) 扫描电镜(SEM)就是介于透射电镜与光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。
扫描电镜的优点就是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。
目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察与微区成分分析,因此它就是当今十分有用的科学研究仪器。
电子束与固体样品的相互作用扫描电镜从原理上讲就就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。
通过对这些信息的接受、放大与显示成像,获得对就是试样表面性貌的观察。
具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。
电子束与固体样品表面作用时的物理现象一、背射电子背射电子就是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子与非弹性背反射电子。
弹性背反射电子就是指倍样品中原子与反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。
非弹性背反射电子就是入射电子与核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。
非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。
从数量上瞧,弹性背反射电子远比非弹性背反射电子所占的份额多。
背反射电子的产生范围在100nm-1mm深度,如下图所示。
电子束在试样中的散射示意图背反射电子产额与二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。
背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。
二、二次电子二次电子就是指背入射电子轰击出来的核外电子。