第七讲 平均数检验——方差分析
- 格式:pdf
- 大小:773.71 KB
- 文档页数:38
第7章方差分析摘要:多组资料均数比较一般采用方差分析的方法,SAS中方差分析的功能非常全面,能实现方差分析功能的过程有ANOV A过程和GLM过程。
对于两个平均数的假设测验,一般采用t测验来完成,对于多个平均数的假设测验,若采用t测验两两进行,不仅非常麻烦,而且容易犯第一类错误。
方差或称均方,即标准差的平方,它是一个表示变异程度的量。
在一项试验或调查中往往存在着许多种影响生物性状变异的因素,这些因素有较重要的,也有较次要的。
方差分析就是将总变异分裂为各个因素的相应变异,作出其数量估计,从而发现各个因素在变异中所占的重要程度;而且除了可控制因素所引起的变异后,其剩余变异又可提供试验误差的准确而无偏的估计,作为统计假设测验的依据。
当试验结果受到多个因素的影响,而且也受到每个因素的各水平的影响时,为从数量上反映各因素以及各因素诸水平对试验结果的影响,可使用方差分析的方法。
SAS系统用于进行方差分析的过程主要有ANOV A过程和GLM过程,对于均衡数据的分析一般采用ANOV A过程,对于非均衡数据的分析一般采用GLM过程。
方差分析和协方差分析在SAS系统中由SAS/STAT模块来完成,其中我们常用的有ANOV A过程和GLM过程。
前者运算速度较快,但功能较为有限;后者运算速度较慢,但功能强大,我们做协方差分析时就要用到GLM过程。
本章将首先介绍方差分析所用数据集的建立技巧,然后重点介绍这两个程序步。
§7.1 方差分析概述一、方差分析的应用场合、基本思想和前提条件1.应用场合当影响因素是定性变量(一般称为分组变量或原因变量),观测结果是定量变量(一般称为结果变量或反应变量),常用的数据处理方法是对均数或均值向量进行假设检验。
若只有一个原因变量,而且其水平数k≤2,一元时常用U检验、t检验、秩和检验,多元时用多元检验(T2检验或wilks’^检验);若原因变量的水平数k≥3或原因变量的个数≥2,一元时常用下检验,也叫一元方差分析(简写成ANOV A)或非参数检验,多元时用多元方差分析(简写成MANOV A,其中最常用的是Wilks’^检验)。